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SOPMA: significant improvements in protein
secondary structure prediction by consensus
prediction from multiple alignments

C.Geourjon and G.Deléage’

Abstract

Recently a new method called the self-optimized prediction
method (SOPM ) has béen described to improve the success
rate in the prediction of the secondary structure of proteins.
In this paper we report improvements brought about by
predicting all the sequences of a set of aligned proteins
belonging to the same family. This improved SOPM method
(SOPMA) correctly predicts 69.5% of amino acids for a
three-state description of the secondary structure (a-helix,
3-sheet and coil) in a whole database containing 126 chains
of non-homologous (less than 25% identity ) proteins. Joint
prediction with SOPMA and a neural networks method
(PHD) correctly predicts 82.2% of residues for 74% of
co-predicted amino acids. Predictions are available by
Email to deleage@ibep.fr or on a Web page (htip:||
www.ibep fi/predict.html).

Introduction

Numerous methods have been developed to predict the
secondary structure of proteins from their amino acid
sequences (for a recent review see Eisenhaber ef al., 1995).
Currently available methods have success rates ranging
from 56 to 72% for a three-state (a-helix, (3-sheet and
aperiodic states) description of secondary structure. The
number of proteins with known structure has increased at
an average rate of more than 150 new structures elucidated
per year (Lattman, 1994). Even though the size of the
database of secondary structures has not grown with
the same rate, since all the proteins should not present
too much identity to be incorporated in it, this increase
does not lead to a concomittant increase in prediction
accuracy. At the same time the number of proteins that
belong to a given family has grown with the increasing
size of the protein sequence database and this
classification into known families has been used with
success (Boscott et al., 1993). Moreover, several groups
have already incorporated multiple alignment information
to increase the success rate in secondary structure
prediction (Levin et al., 1986; Rost and Sander, 1994a;
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Di Francesco et al., 1995). Recently, we have described a
new method called SOPM (self-optimized prediction
method) to predict the secondary structure of a given
protein (Geourjon and Deléage, 1994). Briefly, this
method: (i) builds a limited database of protein sequences
with their known secondary structures; (ii) predicts the
secondary structure of all the proteins of the database
using a similarity algorithm; (iii) determines the prediction
parameters that maximize the accuracy of the prediction;
(iv) applies the prediction parameters to the given protein.

In this paper we have investigated the possibility of
increasing the prediction accuracy of SOPM by taking
into account the information brought about by multiple
alignment of related protein sequences. The results are a
4% additional gain in predictive power of the self-
optimized prediction method (a single sequence-based
predictive scheme) when measured on the same database.
Thus the global method, called SOPMA (self-optimized
prediction from multiple alignment) now reaches 73.2%.
On a more restrictive database (25% identity threshold)
towards homology (Rost and Sander, 1993) the success
rate is 69.5%. and 82% if joint prediction with the PHD
neural method (Rost and Sander, 1993) is taken into
account.

Systems

All calculations were carried out on an IBM rs6000 560
workstation. All the programs were written in a Fortran
F77 compatible language (IBM VS-FORTRAN 2.3
compiler) using AIX 3.2 (Unix) as the operating system.
Thus portability is warranted for most machines
working under Unix (Silicon Graphic, SUN and
Hewlett Packard).

Methods

The general flow chart is given in Figure | for each
sequence of the reference database. The first step consists
of searching for homologous proteins in the SWISSPROT
sequence database (Bairoch and Boeckman, 1994) using
the FASTA (Pearson and Lipman, 1988) program. A
sequence is retained if its OPT score is greater than 80. The
most homologous (limited to a set of 25) sequences are
extracted from the SWISSPROT database. The second
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Fig. 1. Logical strategy of the SOPMA method.

step consists of alignment of the sequences constituting the
set of homologous proteins using the CLUSTAL program
(Higgins and Sharp, 1988) with default parameters. Then,
the third step is to apply the SOPM method to each of the
aligned sequences. For each amino acid position in the
multiple alignment the conformational score of each state
is averaged over all the sequences at the given position. In
the multiple alignment a nil value is attributed to each gap.
Finally, the conformational state yielding the highest score
is attributed to the given amino acid with the averaged
conformational score.

Prediction accuracy

Different ways of calculating the prediction accuracy have
been used.

The most commonly used way of expressing prediction
accuracy is the percentage of correctly predicted residues,
0% or Q4% for 3 and 4 states respectively. The second
way of expressing the accuracy is the correlation

coefficient C described by Matthews (1975):
(pi-mi) — (u.0;)
V(1 + ) (m; + 0;)(pi + 1) (pi + 04)

where i designates one state among k possibilities, p; is the
number of residues correctly predicted and observed to
belong to state 7, n; is the number of residues correctly
predicted and not observed to belong to state i, u; is the
number of residues not predicted but observed to belong
to state i and o, is the number of residues predicted but not
observed to belong to state i. A value of 1 indicates a fully
correlated prediction, a zero value a non-correlated
prediction and a negative value a negatively correlated
prediction.

Another interesting parameter is the root mean square
deviation (r.m.s.) o of the estimation of secondary structure
content from a prediction method. The third parameter is
the segment overlap (SOV) (Rost and Sander, 1994b). This
parameter measures the segmental accuracy rather than a
residue per residue accuracy. It is calculated as follows:

soveé = 2

Cli) =

minlend(sl); end(s2)] — max[beg(s1); beg(s2)] + 1+ 6
% Z max[end(s1); end(s2)] — min[beg(sl); beg(s2)] + 1

s
« len(s1)

where min|g; b] is the minimum of the values @ and b and
max|a; b] is the maximum: /en is the length of the given
segment. & is a parameter that takes into account the
uncertainty of secondary structure boundaries definition
from three-dimensional data.

6 < min {[max ov(sl;52) — min ov(sl; s2));

l -
min ou(sl; s2); eniel) }

/)
where minov and maxov are the nominator and the
denominator of the SOV equation respectively.
Results and discussion

The new version of the SOPM method has been applied
using a jack-knife procedure to two recently described

Table I. Accuracy of the SOPMA method on the 239 protein chains of the DATABASE.DSSP (50% identity cut-off)

State Observed Predicted Correct (o8} Sigma C SOV Q4

Helix 14002 13641 10101 72.1 8.7 0.62 0.74 71.9
Sheet 10396 9960 6794 65.4 9 0.57 0.78 64.2
Coil 21825 22622 16918 7.5 94 0.54 0.67 68.9
Turn 29.5
Total 46223 46223 33813 732 0.66 64.2
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Table II. Accuracy of the SOPMA method on the Rost and Sander database (25% identity cut-off)

State Observed Predicted Correct 05 Sigma G SOV Q4

Helix 7390 7023 5024 70.4 12.0 0.56 0.74 70.0
Sheet 4958 4786 2991 60.3 10.8 0.51 0.72 60.2
Coil 10742 11282 8040 74.8 12.0 0.48 0.63 66.5
Turn 25.0
Total 23091 23091 16055 69.5 0.68 61.5

databases; DATABASE.DSSP (Geourjon and Deléage,
1994) and the Rost and Sander (1993) databases. The
main difference between the two databases lies in the
identity cut-off for removing proteins chains. The
DATABASE.DSSP reference database has been built
using a 50% identity cut-off level and contains 239 chains
that represent 46223 amino acids. The Rost and Sander
database has been established using a 25% identity cut-off
level and contains 126 chains that yield 23 091 amino acids.
It has to be mentioned that 8-turn information has been
taken into account, since users are most often interested in a
four-state prediction, thus including turn information.

The results obtained by applying the SOPMA method
to DATABASE.DSSP are given in Table I for 3 and 4
states. The global Q5 value (see Methods) is as high as
73.2% using a jack-knife procedure (leaving one protein
out and making predictions on that protein and repeating
the procedure for all proteins in the data set). Considering
the turn information drops Q,% down to 64.2%. The
correlation coefficients C reported in Table 1 are 0.62
for the a-helix state, 0.57 for the 3-sheet state and 0.54 for
the coil state. The r.m.s. deviation is as low as 8.7% for the
a-helix state, 9% for the (3-sheet state and 9.4% for the
coil state, showing a rather good estimation of the
secondary structure content of a protein by this method.
The SOV parameters (see Methods) are 0.74, 0.78 and 0.67
for the helix, sheet and coil states respectively. However,
one has to check the secondary structure predictive
methods on proteins sequences that are clearly not
related (when homology modelling is not confidently
applicable). In other words, the method has to be checked
on a database containing protein sequences that share less
than 25% identity. A reference database that contains 126
non-related protein sequences corresponds to this criteria
and has been given by Rost and Sander (1993).

The results obtained by applying the SOPMA method
to the 126 proteins are given in Table II. The global Q5
value (see Methods) is 69.5%. When the turn state is also
considered Qy is 61.5%. Thus the decrease in accuracy is
lower on the Rost and Sander database (7%) than on our
database (9%; see above). The correlation coefficients C
reported in Table II are 0.56 for the a-helix state, 0.51 for
the (-sheet state and 0.48 for the coil state. The r.m.s.
deviation is as low as 12% for the o-helix state, 10.8% for
the [(-sheet state and 12% for the coil state. Obviously,
the success rate is dependent upon the similarity level
between the protein sequences contained in the
database. This fact is very useful for a user who
wants to derive the secondary structure of related
sequences (to look for mutations that potentially affect
regular secondary structures). These results have to be
compared with those obtained by other methods. To
date the most powerful methods to predict the
secondary structure of proteins are based on neural
networks. Indeed, the PHD method has a success rate
of 72% for a three-state description of protein
secondary structure. When checked on the same
database as the PHD method our SOPMA method
yields 69.5% of correctly predicted residues (three
states, see Table II). Thus our SOPMA method
constitutes a valuable alternative to the neural net-
works-based methods, which can be biased by a
dependence between the learning and the training sets
of proteins. Anyway, having two methods with high
accuracy based on different principles available for the
experimentalist is a decisive advantage that can (should)
be used in joint prediction. Although not new, the joint
prediction approach allows a cross-validation that
improves individual methods and is particularly useful
for the user.

Table I1I. Predictive success of joint prediction between SOPMA and neural net method PHD checked on the Rost and Sander database (25% identity

cut-off)

State Observed Predicted Percent joint Correct [e C SOV
Helix 7390 5191 70.2 4475 86.2 0.63 0.73
Sheet 4958 3313 66.8 2583 78.0 0.56 0.73
Coil 10742 8552 79.6 6957 81.3 0.54 0.64
Total 23091 17056 739 14015 822 0.68
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Joint prediction with neural network

Generally a user is more interested in a knowledge of the
secondary structure of given segments, rather than a
global prediction of the complete sequence. In this
context, joint prediction is a powerful way to address
this problem, provided the joined methods are based on
different principles. Since the neural network-based
methods have proved to be very efficient, we have made
a joint prediction with the PHD method (Rost and Sander,
1993, 1994) and our SOPMA method (this work). The
results of this joint prediction obtained on the Rost and
Sander database are given in Table III. The global Q,
value (see Methods) is as high as 82% for 74% of jointly
predicted residues (residues predicted as in the same
conformational state by both methods). That means that
the user has access to a cross-validation of different
methods. The most significant improvement brought out
by co-prediction is an increase of 10% in the success rate
on jointly predicted segments. This clearly shows that both
methods are not redundant and that they take benefit from
the joint prediction, one from the other. This is valuable
information for all users of secondary structure prediction
methods, to know that two methods based on different
principles yield identical results on some easily identifiable
parts of the sequence. Moreover, a better agreement
between predicted and observed length in the helical
structures (see SOV parameters) is obtained, indicating
that one would expect a good predictive power from both
methods. This means that methods of predicting protein
secondary structures are now able to locate most of the
stretches with regular structures and that recognition of
folding patterns can be investigated in the best way.
However, efforts have still to be made to improve turn
prediction.

Availability and mailservers

The SOPM and SOPMA methods are available by
anonymous ftp to ibcp.fr or can be obtained through a
mailserver (HELP to deleage@ibcp.fr to get information).
Alternatively, the SOPM/SOPMA methods are reachable
on our Web page (http://www.ibcp.fr/predict.html).
Firstly, our mailserver makes a prediction of the
secondary structure using SOPMA and forwards the
request to predictprotein@EMBL-heidelberg.de for PHD
prediction (Rost et al., 1993). A consensus prediction is
generated on the fly. The user will also receive the FASTA
search result file, the multiple alignment (CLUSTAL) of
the related sequences and the potential sites and signatures
detected from the PROSITE library (Bairoch, 1994) using
our pattern algorithm (Geourjon and Deléage, 1993). The
SOPMA program with the corresponding database can be
obtained for non-commercial use by anonymous ftp

(ibcp.fr) and can be invoked within the ANTHEPROT
suite of programs for protein sequence analysis (Geourjon
and Deléage, 1995).
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