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Abstract use of small samples and the design of robust combiners.

Motivation: In many fields of pattern recognition, combination Theoretical evidence has made rapid strides in forecasting
has proved efficient to increase the generalization performan@?d regression, whereas the specificities of discrimination
of individual prediction methods. Numerous systems have bee#ve seldom been taken into account (Tumer and Ghosh,
developed for protein secondary structure prediction, based &995)- Discrimination has many applications in biology,
different principles. Finding better ensemble methods for thgUch as the recognition of genes in DNA, or protein structure
task may thus become crucial. Furthermore, efforts need to Béediction. For these applications, many classifiers are al-
made to help the biologist in the post-processing of the output§ady available. They have been conceived by different re-
Results:An ensemble method has been designed to post-proc&8&rch groups, and they rely on different techniques and on
the outputs of discriminant models, in order to obtain arin€ expertise of these groups. Itis thus interesting to develop
improvement in prediction accuracy while generating clas§nsemble methods which allow the combination of existing
posterior probability estimates. Experimental results establisplassifiers so as to improve their recognition rate. This is the
that it can increase the recognition rate of protein secondar§ubject of the present paper. We present a general system
structure prediction methods that provide inhomogeneomﬁed'cate‘j to the combination 01_‘ different classifiers operat-
scores, even though their individual prediction successes dfg On sequences. The system is evaluated on an open prob-
largely different. This combination thus constitutes a help for t€M in predictive structural biology: the prediction of protein
biologist, who can use it confidently on top of any set ¢iécondary structure. The prediction of protein structure is
prediction methods. Moreover, the resulting estimates can rhaps one of the most focused-on questions in molecular
used in various ways, for instance to determine which areas fiocomputing activities and numerous methods have been
the sequence are predicted with a given level of reliability ~developed to predict secondary structure (for reviews, see
Availability: The prediction is freely available over the InternetEisénhabeet al, 1995; Rost and O’Donoghue, 1997). In
on the Network Protein Sequence Analysis (NPS@) WwAgdition to the amino acid sequences, they ordinarily use data
server at http://pbil.ibcp.ffNPSA/npsa_serverhtml. The sourdéom different knowledge sources (physicochemical prop-
code of the combiner can be obtained on request for acaderfidies, homology, etc.). Consequently, whenever secondary
use structure is to be predicted, several sets of conformational
Contact: Neural network and ensemble method: Yann.GueiScores are available, each of which can be considered a priori

meur@ens-lyon.fr; server and prediction methods: g.deds useful. Most of the current best prediction methods al-
leage@ibep.fr ready implement conformational score combination at one

stage or another. This combination can take many forms,
ranging from the simple linear opinion pool (Rost and
Sander, 1993) to the more complex non-linear regression
The idea of combining models in order to improve performschemes performed by neural networks (Zhetrag, 1992;

ance is well known in statistics and has a long theoretic&iis and Krogh, 1996). Symbolic methods based on empiri-
background (Bates and Granger, 1969; Dickinson, 1978al results have also beenimplemented, such as the algorithm
1975; LeBlanc and Tibshirani, 1993; Jordan and Jacobspmbine (Biouet al, 1988). However, the choice of a par-
1994; Pengt al, 1994). The main research issues, for whichicular combiner is hardly ever justified, although it appears
operational solutions have been proposed, deal with the de- have a crucial effect on performance. Furthermore, the
velopment of experts with different behaviours, the optimascores combined are systematically homogeneous, i.e. they
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represent estimates of the same quantities, whereas #igorithm
practitioner who needs to make his own prediction based %ﬂ’ bl ificati
the results of several methods has most often to deal wiHOPEM Specification

inhomogeneous scores. We consider the case @fcategory discrimination tasks, under

Our combination method is based on multivariate lineage assumption that for each input pattern or instartice out-
regression (MLR). It allows the combination of inhomoge-putsfj (® = [[Kk®], (L <j<P), 1<k<Q) of P classifiers are
neous scores and ensures that the resulting prediction will ggailableD = {4, W)}, (1 <i < N) denotes the training sgt.
better than those of the individual methods. Its originalitys the canonical coding of the categoryofe.y = [&q], (1<
rests on the fact that it estimates the posterior probability @f< Q) whenx 0 G, whered is Kronecker’s symbol. LeF(x)
classes, while being simpler than a neural network and far[fl(x)T' fj(x)T, fp(x)T]T 0 IRPQ be the vector of pre-
more efficient than a weighted average. This can be dogggtors for example [f ()T is the transpose of vecti)]. In
under weak hypotheses regarding the predictors (the expefi§is context, we address the following problem.
outputs). These hypotheses are non-restrictive, as will beproblem 1 Given a set of models trained independently to
shown here. The method thus offers a good compromise tﬁrform a multiclass discrimination task, combine the scores
tween simplicity and efficiency. Itis also possible to establisthey generate in order to produce class posterior probability
tight distribution-independent bounds on its generalizatioapproximations corresponding, when processed with Bayes’
ability. To our knowledge, this is the first efficient ensemblesstimated decision rule, to an improved recognition rate.
method for which such bounds have been derived.

We first introduce the formal setting of the combinationyytivariate linear regression on class posterior
problem and explain how the MLR model can be constrainggpapility estimates
to solve it provided the predictors are preliminary adequately
processed. A neural network is described which performé/e solve Problem 1 under the additional hypothesis that the
this pre-processing. We then mention some appealing propHtputs of the models are class posterior probability esti-
erties of the model concerning its generalization ability. Fimates, i.e¥(j, k), fx(x) = p“)j(Ck|x). They are thus non-nega-
nally, we turn to its application for protein secondary structive and sum to one. We will see in the next section that this
ture prediction. We describe experiments which highlight theypothesis induces no restriction on the nature of the
relevance of our approach for this problem, irrespective ahethods that can be combined. To satisfy the requirements
the nature of the scores provided by the experts combinesf. Problem 1, the components of the functigpresulting
They establish that combining two of the best method$;om the combination must themselves be non-negative and
namely PHD (Profile network from HeiDelberg) (Rost andsum to one. In what follows, we briefly describe how the
Sander, 1993, 1994) and SOPMA (Self-Optimized PrediaviLR model is implemented to compute such a function [de-
tion from Multiple Alignment) (Geourjon and Deléage, tails of proofs can be found in Guermeur (1997)].
1995), can generate a statistically significant increase in pre-The  MLR model studied here, parameterized by
diction accuracy. The important question of the benefits thaf _ VI,...\],... V3T € IRP®, computes the functiony
can be expected in structure prediction from class pOSter'BK/en by:

probability estimation is also studied.
.

9:(¥) Vi
Systems and methods : :
e , g = [9X | = || F (1)
All programs have been written in C ANSI for maximal speed : :
and portability. They are integrated into one single treatment g '(x) v.T
which successively performs the acquisition of the conforma- Q | <
tional scores provided by different prediction methods and uses \—pm=0

them to generate initial class posterior probability estimat _ _ A <k <

from which the final probabilities of class membership are dg'—%' o) ; mz::lvk'm n) = PG, (1 = k= Q).

rived, by linear combinations. This process can be invoked froMaximizing directly the empirical recognition rate with re-
within the NPS@ (Network Protein Sequence Analysis) servespect tov is difficult. In this work, we optimize the ‘quality’

All the secondary structure prediction methods have been irof the class posterior probability estimates. This choice is
plemented as described by the authors (Geourjon and Deléagmunded on the fact that both criteria are asymptotically
1995; Garnieret al, 1996; Levin, 1997), and are availableequivalent. Thus, we consider the Aaif convex loss func-
through the WW\W server, except for PHD. For this method, thiions which ensure that the model outputs can be interpreted
output files of the leave-one-out cross-validation procedure haas probabilities. It includes as special cases the quadratic and
been obtained directly from B.Rost. cross-entropic losses (see Bishop, 1995). The training prob-
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Fig. 1.Architecture of the network used to post-process the outputs of each of the prediction methods which do not estimgpesteriolass
probabilities. Vectorf[x_g)T,... f{(x)T,..., f{(+g) T TOIR! contains the original scores for a segment of size 17. Lbteendb, respectively,
represent the hydrophobicity, charge and bulk of the residues. Two distinct sets of hidden units are devoted to thef tledetyybich makes

it easier for the network to take them both into account.

lem can then be reformulated simply owing to the followindDeriving class posterior probability estimates by
proposition, which holds irrespective of the nature of the obRon-linear regression on conformational scores

jective functiond. _ _ _ _
We mentioned in the Introduction that the outputs of protein

Proposition 1 Optimal solutions to Problem 1 are obtainedsecondary structure prediction methods were seldom prob-
by restricting the set of feasible solutions to the convex sgjjity estimates. In order to be workable by the MLR com-

V with: biner, they must be preliminary processed. To perform this
k=0 task, a structure-to-structure filtering neural network intro-
> (Vg = 0.1 = =P, (L=m= Q1) duced in Guermeur and Gallinari (1996), and described in

v=4verP@/q k-t T (2) Figurel, is used. Its inputs are the conformational scores

1pg2v=Q provided by a prediction method for a segment of size 17

centred on the amino acid to be assigned, plus the coding of
Vis the restriction to the non-negative orthant of the intePhysicochemical properties of the corresponding residues.
section of a set of hyperplanesIRF¥. Details on the way Its outputs are the c_ieswed probability estimates. Thg phy_5|—
this set is obtained can be found in Guermeur and Pauga chemical properties are the hydrophobicity as defined in
Moisy (1998) Isenberget al (1987), the charge and bulk, quantified in
Since both the objective functidrand the constraints are accordance with t_he scaling_p_r opos_ed _in Taylor (1986). As
convex functions of; the training procedure amounts t0forthe MLR combiner, the training criterion is cross-entropy.

solving the following simple convex programming problem.
Problem 2Given a convex loss functieriJA and atrain-  Generalization performance
ing setD, find in the family of MLR functiongl a combiner
minimizing the empirical costj(v) _ Z L(ys, (%, V), Although the Igarning process amounts to es‘;imgting prob-
) ability distributions on a finite dataset, the criterion of in-
under the constraint [ V. terest, the generalization ability in terms of recognition rate,
To sum up, solving Problem 2 with any convex programean be concomitantly estimated and controlled. The results
ming algorithm provides us with a statistically rigorous solwe established on that subject (Guermeur and Paugam-
ution to the problem of combining classifiers estimating thloisy, 1998; Guermeuwat al, 1998) rest on one fundamental
class posterior probabilities. In our experiments, we chogbeorem of the statistical learning theory developed by Vap-
the gradient projection method (Rosen, 1960). The active sak (1995): the theorem of uniform convergence of relative
method (see Fletcher, 1991) incorporated in this algorithrinequencies of events to their probabilities. Giving details
was used to implement a procedure of early stoppimgould go beyond the scope of this article. Suffice it to say
(Bishop, 1995). The training criterion was cross-entropy anithat, provided the weak hypotheses of statistical learning
the regression was performed on a windowf3 consecu- apply to biological sequences, propositions of practical in-
tive residues (the model thus HRRQT = 9P inputs). terest can be established, such as the following.
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Proposition 2 In both experimental set-ups described inChoice of classifiers and combiners
the following section, with probability exceeding 0.95, the
generalization performance and the training performance we conceived the experiments in order to characterize the
the MLR combiner differ by <1%. behaviour of the combiner with respect to two factors: its
Proposition 2 deals with the ‘true’ generalization performeapacity to improve the recognition rate of the current best
ance and not a sample-based estimate. Furthermore, it oplgdiction methods and its robustness, i.e. its faculty to main-
depends on the model complexity and the size of the trainirigin its accuracy even in the case of a pool of experts with
sample, not on the distribution of the data, i.e. on the natubégh disparity in performance. To that end, we chose two
of the problem. This makes our combiner the first efficiengifferent sets of classifiers. In a first series of experiments,
ensemble method for which tight bounds on the generali#he combination of PHD and SOPMA was assessed on the
ation performance have been derived in a real-life experflatabase of Rost and Sander. Precisely, two sets of posterior
mental set-up. Such bounds are useful since they allow oREobability estimates were derived from the scores provided
to keep all the data for training and simply ‘extrapolate’ th@y SOPMA by means of two different structure-to-structure
generalization error from the observed one. networks. Although the initial outputs of the PHD method
are actually class posterior probability estimates, we only
had access in this study to a degenerate coding of its predic-
tions: the nature of the conformational states predicted and
the values of the reliability index as defined in Rost and
Sander (1993). These data were used to compute rough in-
itial approximations of the posterior probabilities. Since they
Experimental protocol already appeared to be of reasonable quality, we included
them in the combination, with two other sets provided by two
To assess our combiner, we selected two reference secondiry’ fiItering netwqus. on the whole, fiye classifiers were
structure databases: the Rost and Sander (1993) datab s combined. This first series of experiments was devoted
which contains 126 chains of soluble proteins sharing <25 o he assessment of the_hlghest accuracy reachable. In the
. . . . : d one, performed with the extended database, SOPMA
identity, and its extension to 629 chains (Hobohm an econ = PErto o
Was combined with the GOR IV method [Garnier—Osgu-

Sander, 1994). In both cases, the secondary structure ass%'rpe—Robson (prediction method); Garréeml, 1996]
ment was carried out according to DSSP (Dictionary of Se¢iii~n uses the formalism of the information :[heory,’and

ondary Structures of Proteins) (Kabsch and Sander, 1983)\1pa06 (where SIMPA is SIMilarity Peptide Analysis)

The difference in size dictated the choice of two distinct ®XLevin, 1997), a nearest-neighbour method. As can be seen

perimental procedures. N . _in Table2, the difference in accuracy after filtering between
The first database has been divided by its authors int9vpA96 and GOR IV amounts to 2.9% in recognition rate,

seven disjoint parts of roughly equal size [see Riis and Krogdy that the diversity of the methods was not a priori sufficient

(1996) for detailS]. This Spllttlng is retained here to Imple'to warrant the success of the combination.

ment a two-stage cross-validation procedure. Each subset iSeveral other ensemble methods were implemented for

iteratively used as test set. With the six remaining trainingomparison. We only report here the results obtained with

sets, a variant of stacked generalization (Wolpert, 1992) ig/0 methods lying at opposite ends of the spectrum in terms

applied, in which the initial leave-one-out cross-validatiorof capacity: majority voting and a single hidden layer percep-

procedure is replaced with a more computationally efficiertton. In case equality occurs in majority voting, the con-

6-fold cross-validation. This implementation, also suboptiformational state selected is the one with the highest average

mal, has been observed not to deteriorate the generalizatestimated posterior probability.

performance, which is consistent with other results, for in-

stance those reported in Breiman (1996). The PDBSELECT

extension is more than six times larger than the former rexrediction accuracy

lease in terms of residues. We took advantage of this abun-

dance of data to implement a simpler experimental proFhe prediction accuracy has been assessed by means of four
cedure. The database is also split into seven subsets of gfferent measures: (i) the percentage of correctly predicted
proximately the same size. As before, each subset iigsiduesQs for a three-state description of secondary struc-
iteratively used for testing. The training set is divided intaure (helix, extended and aperiodic); (ii) Pearson’s/Mat-
two halves. The first one is used to train the filtering networkghews’ correlation coefficien® (Matthews, 1975); (iii) the
associated with each of the classifiers. The combiners asegment overlap measure Sov (Retsal, 1994); (iv) the
trained on the sequences of the second one. standard deviation in the secondary structure coatent

Assessment of the method
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Table 1. Compared accuracy of the ensemble methods on the Rost and Sander database

SOPMA SOPMA+ PHD PHD+ NN \ote MLR
Q3 68.9 69.5 715 714 715 72.0 72.4
Ca 0.55 0.58 0.62 0.62 0.62 0.63 0.63
Cp 0.49 0.48 0.52 0.52 0.52 0.52 0.52
Ce 0.48 0.48 0.51 0.51 0.51 0.52 0.52
Sov 0.72 0.70 0.73 0.72 0.72 0.73 0.73
Sow 0.74 0.74 0.75 0.73 0.73 0.75 0.76
Soys 0.72 0.67 0.72 0.70 0.72 0.72 0.70
Soy 0.70 0.70 0.72 0.70 0.71 0.71 0.72
Oq 115 11.0 11.7 114 111 11.0 10.6
op 11.6 12.2 11.2 114 111 11.2 115
¢ 11.7 12.6 12.0 12.3 12.6 12.0 129

Columns 2-5 contain the statistics for individual classifiers. Methods post-processed with the network of Figure 1 assldnstheatname followed by a
plus. The last three columns give the results of the combination with a one hidden layer perceptron (neural network, iNN)ptngjand our MLR combiner.

Table 2. Relative accuracies of the ensemble methods on the PDBSELECT database

GOR IV GOR IV+ SOPMA SOPMA+ SIMPA SIMPA+ Vote NN MLR
Q3 64.1 66.5 68.4 69.7 69.2 69.4 70.2 71.2 713
Ca 0.47 0.51 0.55 0.58 0.56 0.57 0.59 0.60 0.60
Cp 0.39 0.43 0.48 0.49 0.49 0.49 0.49 0.52 0.52
Ce 0.44 0.46 0.49 0.50 0.49 0.49 0.51 0.52 0.52
Sov 0.66 0.68 0.72 0.71 0.71 0.70 0.72 0.72 0.72
Soy 0.63 0.67 0.72 0.73 0.74 0.72 0.73 0.73 0.74
Soy 0.67 0.64 0.73 0.68 0.67 0.66 0.69 0.70 0.68
Soyg 0.68 0.70 0.72 0.72 0.72 0.71 0.73 0.73 0.73
Og 13.9 125 10.8 10.7 10.8 10.6 105 10.1 10.3
ap 115 11.6 10.3 111 11.2 10.7 10.3 10.1 10.9
Oc 9.4 101 9.9 10.6 11.6 111 10.1 105 11.4

Notations are those of Tahle The classifiers combined are GOR 1V, SOPMA and SIMPA96.

Results yields the best results even if thigparameter is somewhat

The comparison of the predictive success of native methotfﬂsore unstable than for individual methods. It is noteworthy

and post-processed ones on the Rost and Sander data nata helix is predicted with the best correlation coefficients
(1993) (columns 2-5 of Tablg shows that the PHD accu- and Sov parameters. Qn the datgbase of Rost and_Sar?der., the
racy is already maximal in the original method, whereas tHgeeuracy Of the_ predlctlor_w resulting from the combination is
Q3 of the SOPMA method is improved by 0.6%. This im-/2-4%, which is 0.9% higher tha_m the accuracy of PHD.
provement is more important (+1.3%) in the extended s&nder the hypotheses of normality classically used in the
(Table2). Most of the gain affects the helix state. case of large samples, the difference is statistically signifi-
The phenomenon obviously springs from the fact theg@nt with a confidence exceeding 0.96. Figures in Table

SOPMA and the structure-to-structure network use the daé@monstrate the ability of SOPMA to generalize to large
in different ways. On the contrary, little can be expected frorflatabases without noticeable loss in accuracy. They also il-
filtering the rough estimates derived from the prediction antiistrate the robustness of our combiner, which succeeds in
reliability index of the connectionist method, apart from dncreasing significantly the recognition rate even in the case
restoration of the original probability approximations. Wherwhere the spectrum of quality among the classifiers is wide.
considering the combination, the MLR model consistentlifPrecisely, the improvement in recognition rate over the best
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SOPMA| SOPMAY PHD PHD PHD
SOPMA 1.00 0.99 0.87 0.88 0.88 GOR4 | SOPMA| SIMPA
SOPMA 0.99 1.00 0.87 0.89 0.88 GOR4 1.00 0.39 0.91
PHD 0.87 0.87 1.00 0.97 0.96 SOPMA 0.89 1.00 0.89
PHD 0.88 0.89 0.97 1.00 0.99 SIMPA 0.91 0.89 1.00
PHD 0.88 0.88 0.96 0.99 1.00

Fig. 2. Empirical error correlation matrices of the classifiers used in the first series of experiframtbé left) and the second one( the
right). In order of increasing row/column indexes, the classifiers correspondiagettwo post-processed versions of SOPMA, PHD in its initial
configuration and combined with two filtering networks. Similarly, the rows/columns of maixespond to post-processed versions of GOR
IV, SOPMA and SIMPA96.

individual method exceeds 1.9%, in a context where majoritjo0 T
voting, for instance, appears clearly inappropriate. This phegg
nomenon is even more prominent if additional ‘weak’ clas-
sifiers are used. To highlight it, we studied the incorporation
in the combination of a hierarchical neural network classifier 7°
and a statistical module (Guermeur and Gallinari, 1996).60
Their respective recognition rates on the PDBSELECT datax,
base are 65.4 and 62.8%. The results of the connectionist
combiner and the majority voting were both negatively af-
fected by this inclusion (loss in accuracy of 0.2 and 1.5%,30
respectively), which had no effect at all on the MLR com- 20
bination (the new classifiers were simply ignored). The gain
in prediction is spread out on most proteins since there are as, |
many as 397 over 629 chains that benefit from the combina-
tion and 54 for which the quality is even. The difference in
raw performance compared with the first set of experiments Value of the highest output
obviously springs from the fact that the quality of the individ-
ual classifiers '5. lower. The leave-one-out predictions 0ﬁ:ig. 3. Recognition rate (striped bars) and percentage of residues
PHD are not available for the largest database. (black bars) as a function of the value of the highest output of the
The main lesson that can be drawn from the analysis of th@mbiner. Predictions are those of the MLR combiner on the Rost
error correlation matrices of Figués that as differentasthe and Sander database (see Table 1).
principles of the methods may be, errors remain highly corre-
lated. This obviously induces a limit on the number of
methods which can be combined profitably. A theoreticafrom the server is given in Figudor the RBTR_KLEAE.
study on this matter can be found in Clemen and WinkleThe output comprises a colour-formatted text incorporated
(1985). Indeed, in both series of experiments, we found Below the sequence. The conformational scores can be
useless to increase the number of experts. viewed directly by spawning the ANTHEPROT [ANalyse
The results of the study of the recognition rate as a functiorHE PROTeins (package)] (ftp.ibcp.fr) software with the
of the highest value of the outputs are summarized in Figushiemical/x-antheprot MIME type. In the graphical viewer, a
3. They corroborate the observations already made in Rasiovable cursor displays the amino acid sequence (from -5
and Sander (1993, 1994) and Riis and Krogh (1996): thie +5 of the current cursor position), the predicted secondary
value is a good indicator of the confidence that one can hag&ucture state and the conformational scores for each state.
in the prediction. More precisely, there is a strong linear de-
pendency between both criteria. One can make use of thi
property to determine anchor points useful in simulations o
protein folding. Unfortunately, the confidence exceeds 90%lthough the idea of combining protein secondary structure
for only 10.4% of the residues. prediction methods is not new, its implementation remains
The MLR combination of different prediction schemes idifficult for the biologist. For instance, a fully satisfactory
available on the Internet (http://pbil.ibcp.frINPSA/ answer is still to be given to the fundamental question of the
npsa_mlr.html) by using the NPS@ server. A typical outpugelection of the committee of experts. Making joint predic-
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Fig. 4. The combination of three methods, SOPMA, GOR IV and SIMPA, has been performed by means of the multivariate linear regressiol
on the ribitol operon repressor protein (RTBR_KLEAE code from SWISS-PROT 36.0) through our Web server at http:/pbil.iBép.fr/NP
npsa_mir.html. Colour-coded outputs are provided with the prediction, as well as a synthetic graphic image of the rgsattracal display

of the conformational scores (not shown). The result can be directly loaded within the AnTheProt 4.0 (graphic view a)teeffigare by

using the chemical/x-antheprot MIME type and by clicking on the appropriate link (View data in AnTheProt PC). The AnTheRiret sof
(ftp.ibcp.fr) allows the user to move the cursor along the sequence and the conformational scores (probabilities mulopddtey given

at the location of the cursor.

tions (considering residues predicted in the same conformsuslts that hybrid secondary structure prediction methods can
tional state by different methods) is helpful to stress regiorzenefit from the use of ensemble methods more sophisti-
that are predicted with high confidence (Zhahgl, 1992; cated than the common weighted averages. However, due to
Geourjon and Deléage, 1995), which makes an experimenthk limited size of the databases currently available, their
determination of the structure considerably easier. Howevdiias, as well as the bias of the classifiers, combining subsys-
this only concerns limited parts of the structure. In this papaems with complex non-linear models can lead to poor gener-
we have highlighted the fact that the user can always taldization performance. Our combiner thus appears as a good
advantage of the combination of methods, even when thepmpromise. It has proved capable of increasing significant-
provide scores of different natures or exhibit large differty the recognition rates of the two current best protein sec-
ences in prediction accuracy. The main requirement to eondary structure prediction methods. Multiple extensions of
sure an improvement lies in the choice of a combiner of aphis work can be thought of to make a better use of the ap-
propriate complexity. It springs from the experimental reproximations of the class posterior probabilities than simply
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computing a reliability index. We have highlighted in GuerGarnier,J., GibratJ.-F. and Robson,B. (1996) GOR method for
meur (1997) the fact that their quality was compatible with predicting protein secondary structure from amino acid sequence.
the implementation of higher level modules such as dynamicMethods Enzymgl266 540-553.

programming algorithms or hidden Markov models. Thigseourjon,C. and Deléage,G. (1995) SOPMA: significant improve-

property is very attractive, which should make it possible to Ments in protein secondary structure prediction by consensus
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Appendx (gl 6 + (1~ OV),y) = BL(gx V&), +

We give below the definitions of several of the mathematical (1 - O)L(g(x,v),y)

concepts used in this article. These definitions are standardNote that the convexity df implies the convexity od.

in the various fields to which the concepts belong. The sample-based estimate of the quadratic cost function
For allnin IN*, IR" denotes the-dimensional Euclidian s given by:

space. -
The canonical coding of categay is the vector ofR< Jv) = li‘ I gt v) — v |

the components of which are all equal to 0, excepkitihe N & v '

one, which is equal to 1.
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H H — l gk(xll Vk)
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tion function on the Cartesian prodixck Y of the inputand  whereyy is thekth component of vectog.
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