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Abstract
Motivation: In many fields of pattern recognition, combination
has proved efficient to increase the generalization performance
of individual prediction methods. Numerous systems have been
developed for protein secondary structure prediction, based on
different principles. Finding better ensemble methods for this
task may thus become crucial. Furthermore, efforts need to be
made to help the biologist in the post-processing of the outputs.
Results: An ensemble method has been designed to post-process
the outputs of discriminant models, in order to obtain an
improvement in prediction accuracy while generating class
posterior probability estimates. Experimental results establish
that it can increase the recognition rate of protein secondary
structure prediction methods that provide inhomogeneous
scores, even though their individual prediction successes are
largely different. This combination thus constitutes a help for the
biologist, who can use it confidently on top of any set of
prediction methods. Moreover, the resulting estimates can be
used in various ways, for instance to determine which areas in
the sequence are predicted with a given level of reliability.
Availability: The prediction is freely available over the Internet
on the Network Protein Sequence Analysis (NPS@) WWW
server at http://pbil.ibcp.fr/NPSA/npsa_server.html. The source
code of the combiner can be obtained on request for academic
use.
Contact: Neural network and ensemble method: Yann.Guer-
meur@ens-lyon.fr; server and prediction methods: g.de-
leage@ibcp.fr

Introduction

The idea of combining models in order to improve perform-
ance is well known in statistics and has a long theoretical
background (Bates and Granger, 1969; Dickinson, 1973,
1975; LeBlanc and Tibshirani, 1993; Jordan and Jacobs,
1994; Peng et al., 1994). The main research issues, for which
operational solutions have been proposed, deal with the de-
velopment of experts with different behaviours, the optimal

use of small samples and the design of robust combiners.
Theoretical evidence has made rapid strides in forecasting
and regression, whereas the specificities of discrimination
have seldom been taken into account (Tumer and Ghosh,
1995). Discrimination has many applications in biology,
such as the recognition of genes in DNA, or protein structure
prediction. For these applications, many classifiers are al-
ready available. They have been conceived by different re-
search groups, and they rely on different techniques and on
the expertise of these groups. It is thus interesting to develop
ensemble methods which allow the combination of existing
classifiers so as to improve their recognition rate. This is the
subject of the present paper. We present a general system
dedicated to the combination of different classifiers operat-
ing on sequences. The system is evaluated on an open prob-
lem in predictive structural biology: the prediction of protein
secondary structure. The prediction of protein structure is
perhaps one of the most focused-on questions in molecular
biocomputing activities and numerous methods have been
developed to predict secondary structure (for reviews, see
Eisenhaber et al., 1995; Rost and O’Donoghue, 1997). In
addition to the amino acid sequences, they ordinarily use data
from different knowledge sources (physicochemical prop-
erties, homology, etc.). Consequently, whenever secondary
structure is to be predicted, several sets of conformational
scores are available, each of which can be considered a priori
as useful. Most of the current best prediction methods al-
ready implement conformational score combination at one
stage or another. This combination can take many forms,
ranging from the simple linear opinion pool (Rost and
Sander, 1993) to the more complex non-linear regression
schemes performed by neural networks (Zhang et al., 1992;
Riis and Krogh, 1996). Symbolic methods based on empiri-
cal results have also been implemented, such as the algorithm
combine (Biou et al., 1988). However, the choice of a par-
ticular combiner is hardly ever justified, although it appears
to have a crucial effect on performance. Furthermore, the
scores combined are systematically homogeneous, i.e. they
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represent estimates of the same quantities, whereas the
practitioner who needs to make his own prediction based on
the results of several methods has most often to deal with
inhomogeneous scores.

Our combination method is based on multivariate linear
regression (MLR). It allows the combination of inhomoge-
neous scores and ensures that the resulting prediction will be
better than those of the individual methods. Its originality
rests on the fact that it estimates the posterior probability of
classes, while being simpler than a neural network and far
more efficient than a weighted average. This can be done
under weak hypotheses regarding the predictors (the experts’
outputs). These hypotheses are non-restrictive, as will be
shown here. The method thus offers a good compromise be-
tween simplicity and efficiency. It is also possible to establish
tight distribution-independent bounds on its generalization
ability. To our knowledge, this is the first efficient ensemble
method for which such bounds have been derived.

We first introduce the formal setting of the combination
problem and explain how the MLR model can be constrained
to solve it provided the predictors are preliminary adequately
processed. A neural network is described which performs
this pre-processing. We then mention some appealing prop-
erties of the model concerning its generalization ability. Fi-
nally, we turn to its application for protein secondary struc-
ture prediction. We describe experiments which highlight the
relevance of our approach for this problem, irrespective of
the nature of the scores provided by the experts combined.
They establish that combining two of the best methods,
namely PHD (Profile network from HeiDelberg) (Rost and
Sander, 1993, 1994) and SOPMA (Self-Optimized Predic-
tion from Multiple Alignment) (Geourjon and Deléage,
1995), can generate a statistically significant increase in pre-
diction accuracy. The important question of the benefits that
can be expected in structure prediction from class posterior
probability estimation is also studied.

Systems and methods

All programs have been written in C ANSI for maximal speed
and portability. They are integrated into one single treatment
which successively performs the acquisition of the conforma-
tional scores provided by different prediction methods and uses
them to generate initial class posterior probability estimates
from which the final probabilities of class membership are de-
rived, by linear combinations. This process can be invoked from
within the NPS@ (Network Protein Sequence Analysis) server.
All the secondary structure prediction methods have been im-
plemented as described by the authors (Geourjon and Deléage,
1995; Garnier et al., 1996; Levin, 1997), and are available
through the WWW server, except for PHD. For this method, the
output files of the leave-one-out cross-validation procedure have
been obtained directly from B.Rost.

Algorithm

Problem specification

We consider the case of Q-category discrimination tasks, under
the assumption that for each input pattern or instance x, the out-
puts fj(x) = [fjk(x)], (1 ≤ j ≤ P), (1 ≤ k ≤ Q) of P classifiers are
available. D = {(xi, yi)}, (1 ≤ i ≤ N) denotes the training set. yi
is the canonical coding of the category of xi, i.e. yi  = [δkl], (1 ≤
k ≤ Q) when xi  ∈  Cl, where δ is Kronecker’s symbol. Let F(x)
= [f1(x)T, …, fj(x)T, …, fp(x)T]T ∈  IRPQ be the vector of pre-
dictors for example x [fj(x)T is the transpose of vector fj(x)]. In
this context, we address the following problem.

Problem 1. Given a set of models trained independently to
perform a multiclass discrimination task, combine the scores
they generate in order to produce class posterior probability
approximations corresponding, when processed with Bayes’
estimated decision rule, to an improved recognition rate.

Multivariate linear regression on class posterior
probability estimates

We solve Problem 1 under the additional hypothesis that the
outputs of the models are class posterior probability esti-
mates, i.e. �(j, k), fjk(x) � p^ j(Ck|x). They are thus non-nega-
tive and sum to one. We will see in the next section that this
hypothesis induces no restriction on the nature of the
methods that can be combined. To satisfy the requirements
of Problem 1, the components of the function g resulting
from the combination must themselves be non-negative and
sum to one. In what follows, we briefly describe how the
MLR model is implemented to compute such a function [de-
tails of proofs can be found in Guermeur (1997)].

The MLR model studied here, parameterized by

v� [vT
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vklm flm(x) � p^(Ck|x), (1� k� Q).

Maximizing directly the empirical recognition rate with re-
spect to v is difficult. In this work, we optimize the ‘quality’
of the class posterior probability estimates. This choice is
grounded on the fact that both criteria are asymptotically
equivalent. Thus, we consider the set Λ of convex loss func-
tions which ensure that the model outputs can be interpreted
as probabilities. It includes as special cases the quadratic and
cross-entropic losses (see Bishop, 1995). The training prob-
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Fig. 1. Architecture of the network used to post-process the outputs of each of the prediction methods which do not estimate the class posterior
probabilities. Vector [f(xi –8)T,… f(xi )T,…, f(xi +8)T] T∈ IR51 contains the original scores for a segment of size 17. Letters h, c and b, respectively,
represent the hydrophobicity, charge and bulk of the residues. Two distinct sets of hidden units are devoted to the two types of data, which makes
it easier for the network to take them both into account.

lem can then be reformulated simply owing to the following
proposition, which holds irrespective of the nature of the ob-
jective function J.

Proposition 1. Optimal solutions to Problem 1 are obtained
by restricting the set of feasible solutions to the convex set
V with:

V�
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(vklm–vklQ) � 0, (1� l � P), (1� m� Q–1)

1
T

PQ2v� Q
�
	



(2)

V is the restriction to the non-negative orthant of the inter-

section of a set of hyperplanes in IRPQ2. Details on the way
this set is obtained can be found in Guermeur and Paugam-
Moisy (1998).

Since both the objective function J and the constraints are
convex functions of v, the training procedure amounts to
solving the following simple convex programming problem.

Problem 2. Given a convex loss function L ∈ Λ and a train-
ing set D, find in the family of MLR functions g a combiner

minimizing the empirical cost J
^
(v) ��

D

L(yi, g(xi, v)),

under the constraint v ∈  V.
To sum up, solving Problem 2 with any convex program-

ming algorithm provides us with a statistically rigorous sol-
ution to the problem of combining classifiers estimating the
class posterior probabilities. In our experiments, we chose
the gradient projection method (Rosen, 1960). The active set
method (see Fletcher, 1991) incorporated in this algorithm
was used to implement a procedure of early stopping
(Bishop, 1995). The training criterion was cross-entropy and
the regression was performed on a window of T = 3 consecu-
tive residues (the model thus had PQT = 9P inputs).

Deriving class posterior probability estimates by
non-linear regression on conformational scores

We mentioned in the Introduction that the outputs of protein
secondary structure prediction methods were seldom prob-
ability estimates. In order to be workable by the MLR com-
biner, they must be preliminary processed. To perform this
task, a structure-to-structure filtering neural network intro-
duced in Guermeur and Gallinari (1996), and described in
Figure 1, is used. Its inputs are the conformational scores
provided by a prediction method for a segment of size 17
centred on the amino acid to be assigned, plus the coding of
physicochemical properties of the corresponding residues.
Its outputs are the desired probability estimates. The physi-
cochemical properties are the hydrophobicity as defined in
Eisenberg et al. (1987), the charge and bulk, quantified in
accordance with the scaling proposed in Taylor (1986). As
for the MLR combiner, the training criterion is cross-entropy.

Generalization performance

Although the learning process amounts to estimating prob-
ability distributions on a finite dataset, the criterion of in-
terest, the generalization ability in terms of recognition rate,
can be concomitantly estimated and controlled. The results
we established on that subject (Guermeur and Paugam-
Moisy, 1998; Guermeur et al., 1998) rest on one fundamental
theorem of the statistical learning theory developed by Vap-
nik (1995): the theorem of uniform convergence of relative
frequencies of events to their probabilities. Giving details
would go beyond the scope of this article. Suffice it to say
that, provided the weak hypotheses of statistical learning
apply to biological sequences, propositions of practical in-
terest can be established, such as the following.



Y.Guermeur et al.

416

Proposition 2. In both experimental set-ups described in
the following section, with probability exceeding 0.95, the
generalization performance and the training performance of
the MLR combiner differ by <1%.

Proposition 2 deals with the ‘true’ generalization perform-
ance and not a sample-based estimate. Furthermore, it only
depends on the model complexity and the size of the training
sample, not on the distribution of the data, i.e. on the nature
of the problem. This makes our combiner the first efficient
ensemble method for which tight bounds on the generaliz-
ation performance have been derived in a real-life experi-
mental set-up. Such bounds are useful since they allow one
to keep all the data for training and simply ‘extrapolate’ the
generalization error from the observed one.

Assessment of the method

Experimental protocol

To assess our combiner, we selected two reference secondary
structure databases: the Rost and Sander (1993) database,
which contains 126 chains of soluble proteins sharing <25%
identity, and its extension to 629 chains (Hobohm and
Sander, 1994). In both cases, the secondary structure assign-
ment was carried out according to DSSP (Dictionary of Sec-
ondary Structures of Proteins) (Kabsch and Sander, 1983).
The difference in size dictated the choice of two distinct ex-
perimental procedures.

The first database has been divided by its authors into
seven disjoint parts of roughly equal size [see Riis and Krogh
(1996) for details]. This splitting is retained here to imple-
ment a two-stage cross-validation procedure. Each subset is
iteratively used as test set. With the six remaining training
sets, a variant of stacked generalization (Wolpert, 1992) is
applied, in which the initial leave-one-out cross-validation
procedure is replaced with a more computationally efficient
6-fold cross-validation. This implementation, also subopti-
mal, has been observed not to deteriorate the generalization
performance, which is consistent with other results, for in-
stance those reported in Breiman (1996). The PDBSELECT
extension is more than six times larger than the former re-
lease in terms of residues. We took advantage of this abun-
dance of data to implement a simpler experimental pro-
cedure. The database is also split into seven subsets of ap-
proximately the same size. As before, each subset is
iteratively used for testing. The training set is divided into
two halves. The first one is used to train the filtering networks
associated with each of the classifiers. The combiners are
trained on the sequences of the second one.

Choice of classifiers and combiners

We conceived the experiments in order to characterize the
behaviour of the combiner with respect to two factors: its
capacity to improve the recognition rate of the current best
prediction methods and its robustness, i.e. its faculty to main-
tain its accuracy even in the case of a pool of experts with
high disparity in performance. To that end, we chose two
different sets of classifiers. In a first series of experiments,
the combination of PHD and SOPMA was assessed on the
database of Rost and Sander. Precisely, two sets of posterior
probability estimates were derived from the scores provided
by SOPMA by means of two different structure-to-structure
networks. Although the initial outputs of the PHD method
are actually class posterior probability estimates, we only
had access in this study to a degenerate coding of its predic-
tions: the nature of the conformational states predicted and
the values of the reliability index as defined in Rost and
Sander (1993). These data were used to compute rough in-
itial approximations of the posterior probabilities. Since they
already appeared to be of reasonable quality, we included
them in the combination, with two other sets provided by two
new filtering networks. On the whole, five classifiers were
thus combined. This first series of experiments was devoted
to the assessment of the highest accuracy reachable. In the
second one, performed with the extended database, SOPMA
was combined with the GOR IV method [Garnier–Osgu-
thorpe–Robson (prediction method); Garnier et al., 1996],
which uses the formalism of the information theory, and
SIMPA96 (where SIMPA is SIMilarity Peptide Analysis)
(Levin, 1997), a nearest-neighbour method. As can be seen
in Table 2, the difference in accuracy after filtering between
SIMPA96 and GOR IV amounts to 2.9% in recognition rate,
so that the diversity of the methods was not a priori sufficient
to warrant the success of the combination.

Several other ensemble methods were implemented for
comparison. We only report here the results obtained with
two methods lying at opposite ends of the spectrum in terms
of capacity: majority voting and a single hidden layer percep-
tron. In case equality occurs in majority voting, the con-
formational state selected is the one with the highest average
estimated posterior probability.

Prediction accuracy

The prediction accuracy has been assessed by means of four
different measures: (i) the percentage of correctly predicted
residues Q3 for a three-state description of secondary struc-
ture (helix, extended and aperiodic); (ii) Pearson’s/Mat-
thews’ correlation coefficient C (Matthews, 1975); (iii) the
segment overlap measure Sov (Rost et al., 1994); (iv) the
standard deviation in the secondary structure content σ.
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Table 1. Compared accuracy of the ensemble methods on the Rost and Sander database

SOPMA SOPMA+ PHD PHD+ NN Vote MLR

Q3 68.9 69.5 71.5 71.4 71.5 72.0 72.4

Cα 0.55 0.58 0.62 0.62 0.62 0.63 0.63

Cβ 0.49 0.48 0.52 0.52 0.52 0.52 0.52

Cc 0.48 0.48 0.51 0.51 0.51 0.52 0.52

Sov 0.72 0.70 0.73 0.72 0.72 0.73 0.73

Sovα 0.74 0.74 0.75 0.73 0.73 0.75 0.76

Sovβ 0.72 0.67 0.72 0.70 0.72 0.72 0.70

Sovc 0.70 0.70 0.72 0.70 0.71 0.71 0.72

σα 11.5 11.0 11.7 11.4 11.1 11.0 10.6

σβ 11.6 12.2 11.2 11.4 11.1 11.2 11.5

σc 11.7 12.6 12.0 12.3 12.6 12.0 12.9

Columns 2–5 contain the statistics for individual classifiers. Methods post-processed with the network of Figure 1 are designated by their name followed by a
plus. The last three columns give the results of the combination with a one hidden layer perceptron (neural network, NN), majority voting and our MLR combiner.

Table 2. Relative accuracies of the ensemble methods on the PDBSELECT database

GOR IV GOR IV+ SOPMA SOPMA+ SIMPA SIMPA+ Vote NN MLR

Q3 64.1 66.5 68.4 69.7 69.2 69.4 70.2 71.2 71.3

Cα 0.47 0.51 0.55 0.58 0.56 0.57 0.59 0.60 0.60

Cβ 0.39 0.43 0.48 0.49 0.49 0.49 0.49 0.52 0.52

Cc 0.44 0.46 0.49 0.50 0.49 0.49 0.51 0.52 0.52

Sov 0.66 0.68 0.72 0.71 0.71 0.70 0.72 0.72 0.72

Sovα 0.63 0.67 0.72 0.73 0.74 0.72 0.73 0.73 0.74

Sovβ 0.67 0.64 0.73 0.68 0.67 0.66 0.69 0.70 0.68

Sovc 0.68 0.70 0.72 0.72 0.72 0.71 0.73 0.73 0.73

σα 13.9 12.5 10.8 10.7 10.8 10.6 10.5 10.1 10.3

σβ 11.5 11.6 10.3 11.1 11.2 10.7 10.3 10.1 10.9

σc 9.4 10.1 9.9 10.6 11.6 11.1 10.1 10.5 11.4

Notations are those of Table 1. The classifiers combined are GOR IV, SOPMA and SIMPA96.

Results

The comparison of the predictive success of native methods
and post-processed ones on the Rost and Sander database
(1993) (columns 2–5 of Table 1) shows that the PHD accu-
racy is already maximal in the original method, whereas the
Q3 of the SOPMA method is improved by 0.6%. This im-
provement is more important (+1.3%) in the extended set
(Table 2). Most of the gain affects the helix state.

The phenomenon obviously springs from the fact that
SOPMA and the structure-to-structure network use the data
in different ways. On the contrary, little can be expected from
filtering the rough estimates derived from the prediction and
reliability index of the connectionist method, apart from a
restoration of the original probability approximations. When
considering the combination, the MLR model consistently

yields the best results even if the σ parameter is somewhat
more unstable than for individual methods. It is noteworthy
that α helix is predicted with the best correlation coefficients
and Sov parameters. On the database of Rost and Sander, the
accuracy of the prediction resulting from the combination is
72.4%, which is 0.9% higher than the accuracy of PHD.
Under the hypotheses of normality classically used in the
case of large samples, the difference is statistically signifi-
cant with a confidence exceeding 0.96. Figures in Table 2
demonstrate the ability of SOPMA to generalize to large
databases without noticeable loss in accuracy. They also il-
lustrate the robustness of our combiner, which succeeds in
increasing significantly the recognition rate even in the case
where the spectrum of quality among the classifiers is wide.
Precisely, the improvement in recognition rate over the best
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Fig. 2. Empirical error correlation matrices of the classifiers used in the first series of experiments (1 on the left) and the second one (2 on the
right). In order of increasing row/column indexes, the classifiers corresponding to 1 are two post-processed versions of SOPMA, PHD in its initial
configuration and combined with two filtering networks. Similarly, the rows/columns of matrix 2 correspond to post-processed versions of GOR
IV, SOPMA and SIMPA96.

individual method exceeds 1.9%, in a context where majority
voting, for instance, appears clearly inappropriate. This phe-
nomenon is even more prominent if additional ‘weak’ clas-
sifiers are used. To highlight it, we studied the incorporation
in the combination of a hierarchical neural network classifier
and a statistical module (Guermeur and Gallinari, 1996).
Their respective recognition rates on the PDBSELECT data-
base are 65.4 and 62.8%. The results of the connectionist
combiner and the majority voting were both negatively af-
fected by this inclusion (loss in accuracy of 0.2 and 1.5%,
respectively), which had no effect at all on the MLR com-
bination (the new classifiers were simply ignored). The gain
in prediction is spread out on most proteins since there are as
many as 397 over 629 chains that benefit from the combina-
tion and 54 for which the quality is even. The difference in
raw performance compared with the first set of experiments
obviously springs from the fact that the quality of the individ-
ual classifiers is lower. The leave-one-out predictions of
PHD are not available for the largest database.

The main lesson that can be drawn from the analysis of the
error correlation matrices of Figure 2 is that as different as the
principles of the methods may be, errors remain highly corre-
lated. This obviously induces a limit on the number of
methods which can be combined profitably. A theoretical
study on this matter can be found in Clemen and Winkler
(1985). Indeed, in both series of experiments, we found it
useless to increase the number of experts.

The results of the study of the recognition rate as a function
of the highest value of the outputs are summarized in Figure
3. They corroborate the observations already made in Rost
and Sander (1993, 1994) and Riis and Krogh (1996): this
value is a good indicator of the confidence that one can have
in the prediction. More precisely, there is a strong linear de-
pendency between both criteria. One can make use of this
property to determine anchor points useful in simulations of
protein folding. Unfortunately, the confidence exceeds 90%
for only 10.4% of the residues.

The MLR combination of different prediction schemes is
available on the Internet (http://pbil.ibcp.fr/NPSA/
npsa_mlr.html) by using the NPS@ server. A typical output

Fig. 3. Recognition rate (striped bars) and percentage of residues
(black bars) as a function of the value of the highest output of the
combiner. Predictions are those of the MLR combiner on the Rost
and Sander database (see Table 1).

from the server is given in Figure 4 for the RBTR_KLEAE.
The output comprises a colour-formatted text incorporated
below the sequence. The conformational scores can be
viewed directly by spawning the ANTHEPROT [ANalyse
THE PROTeins (package)] (ftp.ibcp.fr) software with the
chemical/x-antheprot MIME type. In the graphical viewer, a
movable cursor displays the amino acid sequence (from –5
to +5 of the current cursor position), the predicted secondary
structure state and the conformational scores for each state.

Discussion

Although the idea of combining protein secondary structure
prediction methods is not new, its implementation remains
difficult for the biologist. For instance, a fully satisfactory
answer is still to be given to the fundamental question of the
selection of the committee of experts. Making joint predic-
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Fig. 4. The combination of three methods, SOPMA, GOR IV and SIMPA, has been performed by means of the multivariate linear regression
on the ribitol operon repressor protein (RTBR_KLEAE code from SWISS-PROT 36.0) through our Web server at http://pbil.ibcp.fr/NPSA/
npsa_mlr.html. Colour-coded outputs are provided with the prediction, as well as a synthetic graphic image of the result and a graphical display
of the conformational scores (not shown). The result can be directly loaded within the AnTheProt 4.0 (graphic view of the figure) software by
using the chemical/x-antheprot MIME type and by clicking on the appropriate link (View data in AnTheProt PC). The AnTheProt software
(ftp.ibcp.fr) allows the user to move the cursor along the sequence and the conformational scores (probabilities multiplied by 1000) are given
at the location of the cursor.

tions (considering residues predicted in the same conforma-
tional state by different methods) is helpful to stress regions
that are predicted with high confidence (Zhang et al., 1992;
Geourjon and Deléage, 1995), which makes an experimental
determination of the structure considerably easier. However,
this only concerns limited parts of the structure. In this paper,
we have highlighted the fact that the user can always take
advantage of the combination of methods, even when they
provide scores of different natures or exhibit large differ-
ences in prediction accuracy. The main requirement to en-
sure an improvement lies in the choice of a combiner of ap-
propriate complexity. It springs from the experimental re-

sults that hybrid secondary structure prediction methods can
benefit from the use of ensemble methods more sophisti-
cated than the common weighted averages. However, due to
the limited size of the databases currently available, their
bias, as well as the bias of the classifiers, combining subsys-
tems with complex non-linear models can lead to poor gener-
alization performance. Our combiner thus appears as a good
compromise. It has proved capable of increasing significant-
ly the recognition rates of the two current best protein sec-
ondary structure prediction methods. Multiple extensions of
this work can be thought of to make a better use of the ap-
proximations of the class posterior probabilities than simply
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computing a reliability index. We have highlighted in Guer-
meur (1997) the fact that their quality was compatible with
the implementation of higher level modules such as dynamic
programming algorithms or hidden Markov models. This
property is very attractive, which should make it possible to
implement for structure prediction powerful techniques de-
veloped in other fields of sequence processing.

As a conclusion, our ensemble method may provide the
user with a prediction that benefits from the advantages of
each individual classifier. Moreover, it can exploit any type
of prediction. This makes the system evolutive towards the
most reliable prediction since it has been observed consist-
ently to yield better results than any individual method. At
the biological level, it can be used as the first step for protein
threading, topology and de novo three-dimensional predic-
tions. The MLR combination of different prediction schemes
is available on the Web, thus allowing the biologist to use it
without any implementation effort.
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Appendix

We give below the definitions of several of the mathematical
concepts used in this article. These definitions are standard
in the various fields to which the concepts belong.

For all n in IN*, IRn denotes the n-dimensional Euclidian
space.

The canonical coding of category Ck is the vector of IRQ,
the components of which are all equal to 0, except the kth
one, which is equal to 1.

The class posterior probability p(Ck|x) is the probability
that example x belongs to class Ck.

The loss function L is the function which measures, for
each example x, the discrepancy between the desired output
y and the observed one, g(x). Let p be the probability distribu-
tion function on the Cartesian product X × Y of the input and

output spaces and G = {g(.,v), v ∈  V} the set of MLR func-
tions expressed in parametric form. The generalization error,
or risk, or cost function associated with function g(.,v) is de-
fined as the mathematical expectation:

J(v)= �
X�Y

L(g(x,v),y)dp(x, y)

The estimate of the risk obtained on the training sample D
is called the empirical risk.

L is convex if, and only if, for all (x,y) ∈  X × Y, for all θ ∈
[0,1] and for all (v(1),v(2)) ∈  V2,

L(g(x,�v(1)� (1� �)v(2)),y) � �L(g(x, v(1)),y)�
(1� �)L(g(x,v(2)), y)

Note that the convexity of L implies the convexity of J.
The sample-based estimate of the quadratic cost function

is given by:

J
^
(v) � 1

N


i�N

i�1

� g(xi, v)� yi �
2

The sample-based estimate of the cross-entropic error
function is:

J
^
(v) �� 1

N


i�N

i�1



k�Q

k�1

yik ln�gk(xi,vk)
yik
	

where yik is the kth component of vector yi .


