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Identification of related proteins with weak sequence
identity using secondary structure information

CHRISTOPHE GEOURJON, CHRISTOPHE COMBET, CHRISTOPHE BLANCHET, AND
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Pôle BioInformatique Lyonnais, Institut de Biologie et Chimie des Protéines, Centre National de la Recherche
Scientifique, UMR 5086, 69 367 Lyon CEDEX 07, France

(RECEIVED July 18, 2000; FINAL REVISION January 2, 2001; ACCEPTED January 16, 2001)

Abstract

Molecular modeling of proteins is confronted with the problem of finding homologous proteins, especially
when few identities remain after the process of molecular evolution. Using even the most recent methods
based on sequence identity detection, structural relationships are still difficult to establish with high reli-
ability. As protein structures are more conserved than sequences, we investigated the possibility of using
protein secondary structure comparison (observed or predicted structures) to discriminate between related
and unrelated proteins sequences in the range of 10%–30% sequence identity. Pairwise comparison of
secondary structures have been measured using the structural overlap (Sov) parameter. In this article, we
show that if the secondary structures likeness is >50%, most of the pairs are structurally related. Taking into
account the secondary structures of proteins that have been detected by BLAST, FASTA, or SSEARCH in
the noisy region (with high E value), we show that distantly related protein sequences (even with <20%
identity) can be still identified. This strategy can be used to identify three-dimensional templates in ho-
mology modeling by finding unexpected related proteins and to select proteins for experimental investiga-
tion in a structural genomic approach, as well as for genome annotation.

Keywords: Protein; molecular modeling; sequence; databank; alignment; structure prediction; secondary
structure; Web server

To exploit the data resulting from knowledge of complete
genomes, the need for simple and reliable tools to predict
structural features (two- [2D] or three-dimensional [3D]) of
new proteins is paramount. Biologists and biochemists often
require structural models at their disposal to interpret ex-
perimental data. Currently, three different methods are be-
ing developed to predict the 3D structures of proteins: first,
standard comparative homology modeling in which the
structures of homologous proteins are used as starting
points; second, the threading approach in which sequences
are checked for their fold compatibility using empirical tar-
get functions that are not yet fully optimized; and third, de

novo structure prediction in which structures are directly
derived using empirical rules and simplified protein models.
With the development of structural genomics, homology
molecular modeling will yield an increasing number of po-
tential protein templates. However, molecular modeling of
proteins is confronted with the problem of finding homolo-
gous proteins, especially if their sequences share <30%
identity. The main problem is to identify whether two pro-
teins are homologous even if no significant similarities can
be detected by pairwise sequence comparison. Some strat-
egies have been proposed to address this problem (for re-
view, see Teichmann et al. 1999). In the first approach, as
the homology is transitive, an intermediate protein sequence
can be used as a similarity relay (Park et al. 1997, 1998;
Teichmann et al. 2000). In this context, multiple alignments
performed with divergent protein sequences (Taylor 1986)
may also provide some information. The second approach is
the improvement in searching algorithms, as has been done
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with PSI-BLAST (Altschul et al. 1997) or with profile
methods (Gribskov et al. 1987). More recently, secondary
structure information has also been used for protein fold
recognition (Hargbo and Elofsson 1999; Jones et al. 1999;
Kelley et al. 2000).

In this article, we revisit the possibility of using second-
ary structure likeness to address this problem. We show that
secondary structure agreement between predicted secondary
structures of template and query proteins can be used to
identify distantly related protein sequences. This efficient
template detection allows the modeling process to be ap-
plied with improved reliability even in the twilight zone of
10%–30% sequence identity.

Results

The main idea was to check if the comparison of secondary
structures (either observed or predicted) could provide valu-
able information for the detection of 3D-related proteins
with poor sequence similarity. A typical example for two
structurally related proteins (1hbr-A and 2vhb-B) and two
unrelated proteins (1ai7 and 1jac) is illustrated in Figure 1.
Both sequence pairs share ∼16% identity, and these proteins
could not be assigned as homologous pairs on the basis of
sequence identity. However, they could easily be classified
by comparing their observed secondary structures. To look
at the possibility of generalizing this observation, an exten-
sive comparison of the secondary structures of a large num-
ber of sequence pairs was performed.

Sequence pair sets

For a given searching algorithm, FASTA, SSEARCH, or
BLAST, the first step was to collect all pairs of sequences
with known structures in the 10%–50% sequence identity

range and to look at their secondary structure likeness. This
was done using each protein of the pdb_select_25 (Hobohm
and Sander 1994) as a query sequence in an all-to-all com-
parison search against the pdb_select_95 and by comparing
their observed secondary structures. This method was also
applied to higher E values than the default ones to identify
homologous proteins sharing few identities. The FSSP da-
tabase (Holm and Sander 1994) was used to identify true
positive pairs. The results are given in Table 1 for the three
different similarity search methods with E values of 10, 100,
or even 1000 for BLASTP. The total number of hits (i.e.,
sequence pairs with <50% identity) comprised between
1211 and 4453 hits. The average identity between sequence
pairs ranged from 21.4 to 30.1, and the average length of
pairs was rather constant (from 141 to 168 amino acids). As
expected, the lower the E value, the lower the number of
hits and the higher the percentage of true positives. For an
E value set to 10, the percentage of true positives (3D simi-
lar) ranged from 64.7% (SSEARCH) to 96.1% (BLAST),
whereas the percentage of false positive ranged from 35.3%
and 3.9%. Logically, for a higher E value (100 for FASTA
and SSEARCH, 1000 for BLAST), the order was inverted
because more noise was introduced in the search process.
Table 2 shows the distribution of pairs in the 10%–30%
identity range. Obviously, the average identity level was
lower than that for the 10%–50% identity range, and it
ranged between 19.8% and 23.9%. The average length was
slightly lower (from 135 to 163 amino acids, depending on
both algorithm and E value). In the 10%–30% identity
range, the percentage of structurally similar proteins de-
creased, whereas the percentage of dissimilar ones in-
creased.

Observed versus observed secondary
structure compatibility

To define the function to be used to accurately estimate
comparability between secondary structures, we first used
secondary structures calculated from 3D structures using the
DSSP method. In Figure 2, the agreement between observed
secondary structures (as measured by the Sov parameter) is
plotted as a function of identity (Fig. 2A) or similarity (Fig.
2B) for both related and unrelated protein sequences. As
expected, all pairs sharing >30% identity were structurally
similar and, logically, for these pairs the Sov parameter was
generally >60%. In contrast, in the 10%–30% identity
range, the number of true pairs represented only about half
the whole set (53%). However, in this identity range, a clear
separation between true and false positive pairs was ob-
tained using the Sov parameter. If sequence similarities
were considered instead of identities, the scores increased
by ∼20%, thus giving rise to a 30%–50% similarity range.
However, the same observation could be made about true
versus false distributions. Therefore, only selected sequence

Fig. 1. Comparison of two related (A) and unrelated (B) protein pairs at the
secondary structure level. The sequence pairs of 1hbr-A/2vhb-B (A) and
1ai7/1jac (B) were aligned using the CLUSTALW (1.8) program (Thomp-
son et al. 1994) with default parameters and their observed secondary
structures were deduced from PDB files using the DSSP algorithm (Kabsch
and Sander 1983). Helices are in thin light boxes, and sheets are in large
dark boxes.
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pairs, exhibiting between 10% and 30% identity for which
ambiguities remained in the structural assignment, were
considered in subsequent sections of this article. The num-
bers of true and false pairs are plotted in Figure 3 as a
function of the Sov value obtained with the SSEARCH
algorithm. Their distributions are centered on Sov values of
30% and 77% for false pairs and true pairs, respectively. For
example, when a minimum likeness between observed sec-
ondary structures was fixed at 50%, the number of true pairs
was as high as 555 when compared with a total number of
600 pairs, giving rise to a recognition rate of 93%. This type
of distribution could be used to plot the percentage of cov-
erage and detection as a function of Sov parameters (Fig. 4).
The relationships between the coverage rate and the detec-
tion rate of true positives as a function of Sov were inves-
tigated with the SSEARCH and BLAST programs using
different E values (Fig. 4). In all cases, the detection rate
increased in accord with the Sov value calculated from ob-
served secondary structures. Three different regions of Sov
could be distinguished: the first region with Sov < 30%, in
which pairs were unrelated in most cases; a second region
with Sov > 70%, in which pairs were related in most cases;
and a third, transition region in the range 30% < Sov < 70%.
The Sov value region that showed the largest variation in
detection and coverage was between 30% and 70% regard-

less of the method of comparison and the associated E
value. Typically, such calibration curves provide the biolo-
gist with a confidence index when the user is searching for
a 3D template for molecular modeling.

Observed versus predicted secondary
structure compatibility

As the secondary structure is not known for a novel protein,
the predicted secondary structure should be used instead.
The agreement between several methods estimated by the
Q3 parameter is presented in Table 3 for PHD (Rost and
Sander 1993), DSC (King and Sternberg 1996), and
SOPMA (Geourjon and Deléage 1995). In particular, when
a consensus prediction of these three methods is used, the
accuracy (Q3%) reaches 72.8% for the 1106 pdb_select_25
proteins. In addition, the Sov parameter increases when dif-
ferent methods are combined. In Figure 5, the agreement
between observed (SSEARCH subject sequence) and pre-
dicted (SSEARCH query sequence) secondary structures (as
measured by the Sov parameter) are plotted as a function of
sequence identity (Fig. 5A) or similarity (Fig. 5B) for both
related and unrelated protein sequences. The distribution
looks similar to that presented for observed versus observed
secondary structures (Fig. 2), indicating that predicted sec-

Table 1. Distribution comparison of sequence pairs between 10% and 50% identity detected
with different E values

BLAST
(E � 10)

BLAST
(E � 1000)

FASTA
(E � 10)

FASTA
(E � 100)

SSEARCH
(E � 10)

SSEARCH
(E � 100)

Number of selected pairsa 1243 1841 1211 2992 1471 4453
Structurally similar (%)b 96.1 74.7 70.5 44.4 64.7 26.5
Structurally dissimilar (%) 3.9 25.3 29.5 65.6 35.3 73.5
Average alignment length 176 158 168 143 164 141
Average identity rate (%) 30.1 27.1 27.4 22.6 25.9 21.4

E is the expected E value as defined in Altschul et al. (1997).
a All pairs sharing between 10% and 50% identity, >50 residues and exhibiting <10% gaps.
b Structurally similar pairs are proteins present in the FSSP database with a Z score > 2 and with at least 100
amino acids.

Table 2. Distribution comparison of sequence pairs between 10% and 30% identity detected
with different E values

BLAST
(E � 10)

BLAST
(E � 1000

FASTA
(E � 10)

FASTA
(E � 100)

SSEARCH
(E � 10)

SSEARCH
(E � 100)

Number of selected pairsa 765 1316 852 2634 1115 4097
Structurally similar (%)b 93.6 66 58.1 25.1 53.5 20.1
Structurally dissimilar (%) 6.4 34 41.9 74.9 46.5 79.9
Average alignment length 163 145 151 135 149 135
Average identity rate (%) 23.9 22.4 22.1 20.3 21.5 19.8

E value is the expected value as defined in Altschul et al. (1997).
a All pairs sharing between 10% and 50% identity, >50 residues and exhibiting <10% gaps.
b Structurally similar pairs are proteins present in the FSSP database with a Z score > 2 and with at least 100
amino acids.
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ondary structures might also be used to choose templates for
molecular modeling. However, in the case of observed ver-
sus predicted secondary structures, the dispersion was wider
than that for observed versus observed secondary structures,
probably because of the fact that agreement between pre-
diction and observation was only ∼72%. To know whether
predictions could be used instead of observed versus pre-
dicted secondary structures, the resemblance between pre-
dicted secondary structures for all pairs of proteins was
investigated.

Predicted versus predicted secondary
structure compatibility

Figure 6 shows the agreement, as measured by the Sov
parameter, between predicted secondary structures
(SSEARCH query and subject sequences) as a function of
identity (Fig. 6A) or similarity (Fig. 6B) for both related and
unrelated protein sequences. The distribution looks closer to
that presented for observed versus observed secondary
structures (Fig. 2) than for observed versus predicted struc-
tures (Fig. 5), indicating that predicted secondary structures
could indeed be used to increase the possibility of identify-
ing possible templates for molecular modeling. The expla-
nation for this good agreement is probably that even if pre-
dictions are far from perfect, they predict similar conforma-
tions for related proteins. In other words, even if the
predictions are wrong, they probably fail in the same way
for all related proteins. The calibration curve of coverage
and success as a function of the Sov parameter is given in
Figure 7 for SSEARCH (Fig. 7A,B) and BLAST (Fig.
7C,D). For both similarity search programs, the secondary
structure brought some additional information about struc-
tural relationships, especially if high expected E values were
used. For example, with a BLAST performed on pdb_s-
elect_95 with an E value of 1000, a Sov value between
predicted secondary structures �60 yielded a coverage of
85% and a success of 95% in the detection of related pairs.
This means that secondary structure resemblance is a way of
detecting related pairs even in the noisy region of a BLAST
search.

Fig. 2. Distribution of aligned sequence pairs as a function of the agree-
ment between observed secondary structures. Each sequence pair (query
and subject detected in pdb_select_95 with the SSEARCH algorithm with
an E value � 10) has been aligned using CLUSTALW (1.8) with default
parameters (see Materials and Methods). The observed secondary struc-
tures were deduced from corresponding PDB files using the DSSP program
(Kabsch and Sander 1983). Agreement in secondary structure was mea-
sured using the Sov parameter (Zemla et al. 1999). False positive pairs,
open pale circles; true positive pairs, black crosses. Identity (A) and strong
similarity as defined in CLUSTALW (B).

Fig. 3. Number of false positive pairs (empty squares) and true positive
pairs (filled circles) as a function of observed secondary structure overlap
(Sov). Each sequence pair (query and subject detected in pdb_select_95
with the SSEARCH algorithm with an E value � 10) has been aligned
using CLUSTALW (1.8) with default parameters (see Materials and Meth-
ods). The observed secondary structures were deduced from corresponding
PDB files using the DSSP program (Kabsch and Sander 1983). Agreement
in secondary structure was measured using the Sov parameter (Zemla et al.
1999). Only sequence pairs in the 10%–30% identity range have been taken
into account.

Identifying related proteins using secondary structure information
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Application to molecular modeling

In a molecular modeling process, the secondary structure of
one protein (the potential template) is known, whereas the
structure of the unknown protein (the query) can at best be
approximated using prediction methods. However, predic-
tion can also be performed on the template protein, and a
question that should be addressed is: Is the comparison of
predicted versus predicted structures more appropriate than
observed versus predicted ones in identifying homologous
proteins? The number of pairs detected is shown in Table 4

for both SSEARCH and BLAST algorithms as a function of
identity ranges. With SSEARCH, when no secondary struc-
ture predictions were taken into account, the percentage of
correctly detected pairs was 53% and 20% for E values of
10 and 100, respectively. When a Sov value threshold of
70% was used, the number of related pairs was highest for
observed versus observed structures. However, more sur-
prisingly, the number of related pairs was much higher for
predicted versus predicted pairs (341 for E � 10 and 366
for E � 100) than for observed versus predicted ones (140
for E � 10 and 153 for E � 100), regardless of the identity
range. Moreover, the success rate was slightly better for
predicted versus predicted (99% for E � 10) than for ob-
served versus predicted (97% for E � 10) secondary struc-
tures. The numbers of related pairs using predicted versus
predicted agreement were of the same order of magnitude as
those detected using observed versus observed agreement
(394 for E � 10 and 417 for E � 100). With BLAST, if no
secondary structure predictions were taken into account, the
percentage of correctly detected pairs was 94% and 66% for
E values of 10 and 1000, respectively. By adding secondary
structure information, the recognition rate increased up to
nearly 100%. Moreover, the combination of high E values
(E � 100 for SSEARCH and E � 1000 for BLAST) with

Fig. 4. Percentages of coverage and detection as
a function of observed secondary structure over-
lap (Sov). The percentage of coverage (true posi-
tive pairs above a given Sov divided by the total
number of true positive pairs) is shown by open
squares. The percentage of detection (true posi-
tive pairs divided by total number of pairs above
a given Sov) is shown by filled circles. The dif-
ferent algorithms used are SSEARCH with E
values of 10 (A) and 100 (B) and BLAST with E
values of 10 (C) and 1000 (D). Only sequence
pairs (query and subject) in the 10%–30% iden-
tity range have been taken into account.

Table 3. Accuracy and agreement levels of secondary
structure predictions

Prediction method

Q3%

Coil Helix Sheet Average Sov

SOPMA 75.5 75.3 62.1 72.5 66.7
DSC 78.0 64.5 56.2 68.5 61.5
PHD 74.9 74.3 64.8 72.5 67.8
SOPMA-DSC-PHDa 80.1 72.9 59.4 72.8 67.9

a Consensus prediction from all three methods as calculated in NPS@
(Combet et al. 2000).
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the predicted secondary structure compatibility (measured
with SOV) permits us to identify new related proteins. In-
deed, for SSEARCH (E � 100), 25 new proteins have been
detected (366 as compared with 341) by considering the Sov
parameter. These 25 new proteins were not present in the
SSEARCH (E � 10) list of hits. In the case of BLAST, up
to 62 new related proteins have been detected (524 as com-
pared with 462) that were not present in the BLAST

(E � 10) list of hits. These data clearly show that even for
modeling purposes, the comparison of predicted versus pre-
dicted secondary structures is more suitable than the ob-
served versus predicted comparison.

A typical example is provided in Figure 8A for two pro-
teins (6fab-H and 1ah1) of low sequence identity (18%) and
high predicted versus predicted Sov parameters (89.8%).
The template was detected using PSI-BLAST on the nr
databank (571,000 entries; E value of 3.1 in converged final
run). The alignment of the matching regions of both se-
quences, performed with CLUSTALW (1.8), superposed

Fig. 5. Distribution of aligned sequence pairs as a function of the agree-
ment between observed and predicted secondary structures. Each sequence
pair (query and subject detected in pdb_select_95 with SSEARCH algo-
rithm with an E � 10) has been aligned using CLUSTALW (1.8) program
with defaults parameters (see Materials and Methods). The observed sec-
ondary structures of the subject protein were deduced from corresponding
PDB files by using the DSSP program (Kabsch and Sander 1983). The
predicted secondary structure of the query protein was predicted by a
consensus of PHD, SOPMA, and DSC (see Materials and Methods).
Agreement in secondary structure was measured by using the Sov param-
eter (Zemla et al. 1999). False positive pairs, open pale circles; true posi-
tive pairs, dark crosses. Identity (A) and strong similarity as defined in
CLUSTALW (B).

Fig. 6. Distribution of aligned sequence pairs as a function of the agree-
ment between predicted secondary structures. Each sequence pair (query
and subject detected in pdb_select_95 with SSEARCH algorithm with an
E � 10) has been aligned using CLUSTALW (1.8) program with defaults
parameters (see Materials and Methods). The predicted secondary structure
of the query and the subject protein was predicted by a consensus of PHD,
SOPMA, and DSC (see Materials and Methods). Agreement in secondary
structure was measured by using the Sov parameter (Zemla et al. 1999).
False positive pairs, open pale circles; true positive pairs, dark crosses.
Identity (A) and strong similarity as defined in CLUSTALW (B).
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the two structures with a RMSD of 2.3 Å. This result indi-
cated that both folds are comparable. A 3D model of 1ah1
was built with the Modeller program using the 6fab-H struc-
ture as the template (Fig. 8B). Hence, secondary structure
compatibility has led to the selection of a valuable template
for molecular modeling.

Discussion

In this article, we have shown that secondary structure pre-
diction can help in the identification of related proteins with
divergent sequences. As the structures of related proteins
are often more conserved than their sequences, this conser-
vation also exists at the level of secondary structure. In very
recent studies, this conservation has been used on a residue
per residue basis with a simple scoring function for the
generation of secondary structure profiles (Kelley et al.
2000). However, when comparing secondary structures,
comparison of secondary elements has been found to be
more useful in locating secondary structure elements (Rost
and Sander 1993). For this purpose, the parameter that we
used is the structural overlap (Sov) parameter as originally
defined by Rost and Sander (1993) and recently updated by

Zemla et al. (1999). This parameter has proved to be a good
indicator of the extent to which secondary structure predic-
tions fit with the observed structure for a given protein. In
this article, we have shown that this parameter is also useful
in the comparison of secondary structures of two different
proteins. Here, conservation in secondary structure can also
be detected by the Sov function and the Sov value can be
used to detect proteins with rather dissimilar sequences.
Secondary structure information is particularly useful below
30% identity, as pairwise sequence comparisons detect only
about half of the related proteins sharing 20%–30% identity
(Park et al. 1997; Teichmann et al. 1999). Below 20% iden-
tity, this proportion is even smaller.

Secondary structure information has already been used to
validate a fold recognition approach from secondary struc-
ture alignments (Russell et al. 1996; Koretke et al. 1999) or
to improve the sequence-structure alignment in threading
methods (Miyazawa and Jernigan 2000; Jones et al. 1999).
However, these attempts used the comparison between ob-
served (template) and predicted (target) states. In our work,
we show that predicted states for both the template and the
target are more appropriate than observed versus predicted
states. The explanation is that for distantly related proteins,
predicted states can be much closer to each other (even if

Fig. 7. Percentages of coverage and detection as
a function of predicted secondary structure over-
lap (Sov). The percentage of coverage (true posi-
tive pairs above a given Sov divided by the total
number of true positive pairs) is given in open
squares. The percentage of detection (true posi-
tive pairs divided by total number of pairs above
a given Sov) is given in filled circles. The dif-
ferent algorithms used are SSEARCH with E
values of 10 (A) and 100 (B) and BLAST with E
values of 10 (C) and 1000 (D). Only sequence
pairs in the 10%–30% identity range have been
taken into account.
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predictions are 72% correct in average) than predicted and
observed states.

We have established that in the 10%–30% identity se-
quence range, when the Sov parameter is >50%, almost all
proteins can be correctly assigned as structurally similar on
the basis of predicted secondary structure. The secondary
structure brings an additional dimension to the identity
level, as for a identity level of 20%, as seen in Figure 2, Sov
varies from 20% to >95%. We have also calculated calibra-
tion curves for the use of secondary structure prediction.
When these are used, our approach permits an increase in
the number of potential templates for molecular modeling.
As an example, we have successfully built a model for a
protein that has a sequence identity as low as 16% compared
with its homologue. This strategy is particularly useful in
molecular modeling as finding distantly related proteins
may permit the modeling of more and more proteins. An-
other potential application could be the identification of
protein families on a genomic scale. Indeed, this parameter
can be used in the assignment of an unknown protein to a
given family. We have also shown that this information on
secondary structure is particularly useful in detecting struc-
turally related protein sequences using similarity search al-
gorithms with a high E value as the expected threshold. The

noise that appears when SSEARCH, FASTA, or BLAST are
used with high E values is largely reduced using secondary
structure predictions. For example, in this study, even with
a high E value (E � 1000 was used with BLAST), no ad-
ditional noise appears in the detection of related protein
sequences following the inclusion of secondary structure
resemblance information. Even with the iterated version of
BLAST (PSI-BLAST), which performs much better than
BLAST in detecting remote homologies (Müller et al.
1999), the secondary structure brings additional and inde-
pendent information that can be useful in the validation of
the alignment (Fig. 8). This approach is particularly useful
in structural genomics. The guidelines for automatic assign-
ment of related or unrelated proteins for which the structure
should be either modeled or experimentally determined are
given in Figure 9. If similarity search methods with standard

Table 4. Effect of secondary structure information on the
detection of related pairs

SSEARCH BLAST

E � 10 E � 100 E � 10 E � 1000

Without secondary structure information:a

10%–15% identity 7 21 0 0
15%–20% identity 131 238 86 143
20%–25% identity 269 366 355 411
25%–30% identity 189 197 295 314

Total 596 (53) 822 (20) 716 (94) 868 (66)
Observed versus observed secondary structures:a

10%–15% identity 2 4 0 0
15%–20% identity 70 86 43 63
20%–25% identity 168 173 228 263
25%–30% identity 154 154 231 242

Total 394 (100) 417 (98) 502 (100) 568 (100)
Observed versus predicted secondary structures:a

10%–15% identity 0 0 0 0
15%–20% identity 24 32 29 40
20%–25% identity 75 80 88 109
25%–30% identity 41 41 73 73

Total 140 (97) 153 (90) 190 (99) 222 (98)
Predicted versus predicted secondary structures:a

10%–15% identity 1 3 0 0
15%–20% identity 49 66 25 46
20%–25% identity 154 164 204 231
25%–30% identity 137 133 233 247

Total 341 (99) 366 (92) 462 (99) 524 (98)

The number in parentheses is the percentage of hits detected that are
structurally related.
a Sov threshold � 70%.

Fig. 8. Molecular modeling of 1ah1 from 6fab-H. The sequence of the
1ah1 PDB file was used for a PSI-BLAST search (E value set to 100) onto
the nr databank. After PSI-BLAST had converged (fifth run), the matching
regions between the query and the first detected PDB entry (6fab-H) were
aligned by CLUSTALW (1.8) with default parameters. The predicted con-
sensus secondary structure of both sequences was obtained from the NPS@
server (A). The Sov value between predicted secondary structures is 89.8%.
Superposition (B) of the 1ah1 model generated with 6fab-H as the template
and the experimental 1ah1structure. Sheets are colored in red for 1ah1 and
yellow for 6fab-H.
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E values fails to detect homologous proteins (iden-
tity < 30%), a new run should be performed with higher E
values (E > 100). In this latter case, the results can be fil-
tered by the compatibility of predicted secondary structures
(SOV > 70%). This strategy may allow a biologist to enter
into a 3D modeling process. If no homologous proteins can
be detected on the basis of sequence identity (iden-
tity < 30%) or if the agreement between predicted second-
ary structures (Sov < 70%), the query protein can be as-
signed as a structural orphan. This makes this protein at-
tractive as a starting candidate for experimental structure
determination in a structural genomics approach. Work is in
progress to include the resemblance of predicted versus pre-
dicted secondary structures into fully automatic modeling
procedures. A web server will be designed to automatically
calculate the secondary structure agreement in BLAST and
SSEARCH outputs available with the NPS@ server (http://
pbil.ibcp.fr/NPSA).

Finally, there are at least three applications for which this
work can be useful. The first is to optimize or validate a
pairwise alignment on the basis of secondary structures. The
second is to validate the finding of a template for further mo-
lecular modeling. The last is to permit the identification of
related proteins (genome annotation) from genome projects.

Materials and methods

Sequence pair building

All protein sequences in the pdb_select_25 nonredundant databank
of 3D structures (Hobohm and Sander 1994) were used as the

starting point. This databank contained 1106 protein chains whose
structures are known and share <25% pairwise identity. Each
of these chains was compared with the 3292 sequences of the
pdp_select_95 databank (Hobohm and Sander, 1994) using
BLASTP (Altschul et al. 1997), FASTA (Pearson and Lipman
1988), or SSEARCH (Smith and Waterman 1981). In order to
explore the twilight zone of similarity, several E values were cho-
sen before searching (E � 10 and E � 100 for FASTA and
SSEARCH, E � 10 and E � 1000 for BLASTP). From the result
file, aligned sequence pairs were extracted from the matching re-
gions given by the searching algorithm.

Only aligned sequence pairs containing at least 100 amino acids,
with <10% gaps and showing an identity level in the range 10%–
50% were used in this study. All these sequence pairs were re-
aligned with CLUSTALW (default parameters). In the realignment
process, the observed secondary structure of the query sequence
was used as a profile to weight gap penalties.

Protein structural similarity

To distinguish 3D related proteins (true positive pairs) from unre-
lated ones (false positive pairs), the FSSP database (Holm and
Sander 1994) was used as follows: True positive pairs (i.e., struc-
turally similar) were proteins occurring in FSSP with a Z score >2
and with at least 100 aligned amino acids. All protein sequence
pairs absent in FSSP were considered as false (i.e., structurally
dissimilar). Protein sequences satisfying neither of the previous
conditions were discarded and no longer considered in this study.

Secondary structure

Observed secondary structures in proteins of known structure were
deduced using the DSSP program (Kabsch and Sander 1983).

Secondary structures of protein sequences were predicted with
the help of methods such as SOPMA (Geourjon and Deléage
1995), DSC (King and Sternberg 1996), or PHD (Rost and Sander
1993), all of which use information derived from multiple se-
quence alignment. Briefly, for each protein examined, the se-
quence was compared with BLAST to an up-to-date SWISSPROT
database. First, all sequences having an E value >1.0 were dis-
carded. Second, the bits scores were averaged onto the remaining
sequences. All sequences having a bit score above the mean value
were retained. Third, within this set of sequences, a minimal ratio
of 10 between the E values of two sequences was necessary to
submit proteins to multiple alignment. This ensured a relatively
good representation of the bits score range. Thereafter, this set of
sequences plus the query sequence was submitted to CLUSTALW
(Thompson et al. 1994). The resulting alignment was used in the
secondary structure prediction methods as originally described by
the authors. A consensus of the SOPMA, DSC, and PHD methods
available from the NPS@ Web server (http://pbil.ibcp.fr/NPSA;
Combet et al. 2000) was used. Only three states were taken into
account (helix, sheet, and coil) to validate the consensus, as all
methods used in this study were capable of predicting at least these
three states. The accuracy of secondary structure prediction meth-
ods was estimated using either the percentage correct (Q3) or the
structural overlap (Sov) parameter.

Secondary structure agreement

For each aligned sequence pair, the agreement between secondary
structures was estimated by calculating the Sov parameters (Rost
et al. 1994) as most recently defined (Zemla et al. 1999); that is,

Fig. 9. General guidelines for the use of secondary structure prediction in
structural genomics.
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Sov = 100 × �1

N �
i∈ �H,E,C�

�
S�i�

minov�Sq,St� + ��Sq,St�

maxov�Sq,St�
× len�Sq��

( 1)

in which len is the segment length; H, E, C are helix, extended,
and coil states; minov is the length of actual secondary
structures overlap of the query sq and the target st; maxov is the
maximal length of overlapping secondary structures sq and st;
and � is defined as

��Sq,St� = min��maxov�Sq,St� − minov�Sq,St��; minov�Sq,St�;
int�len�Sq�2��; int�len�St�2��� ( 2)

Molecular modeling

Molecular modeling was performed using spatial restraints with
the help of the default procedure (model-default) of the Modeller
program (Sali and Blundell 1993).
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