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ABSTRACT
Motivation: Multiple sequence alignments are essential
tools for establishing the homology relations between
proteins. Essential amino acids for the function and/or
the structure are generally conserved, thus providing key
arguments to help in protein characterization. However for
distant proteins, it is more difficult to establish, in a reliable
way, the homology relations that may exist between them.
In this article, we show that secondary structure prediction
is a valuable way to validate protein families at low identity
rate.
Results: We show that the analysis of the secondary
structures compatibility is a reliable way to discard non-
related proteins in low identity multiple alignment.
Availability: This validation is possible through our NPS@
server (http://npsa-pbil.ibcp.fr).
Contact: g.deleage@ibcp.fr

INTRODUCTION
Sequencing genome projects have generated a massive
surge of data and a dramatic growth of publicly available
DNA and protein sequences. The remain work consists
to analyze these genomes, to locate the genes and to
assign a biological function and possibly a structure to
each protein resulting from their traduction. The proteins
can be gathered in families and subfamilies, characterized
by typical folds, sites, functions. An essential basis upon
which this classification is established is the comparison
of protein sequences in the form of multiple alignments,
helping to establish predictions about biological functions
and/or phylogenetic relations between proteins. These
multiple alignments, offer through residues conservation
analysis, a rapid way to characterize a protein. Homology
is easy to establish when sequences are similar (sharing
an identity > 30%). This does not imply that nonsimilar
proteins are not related. The difficulty is to validate protein

∗To whom correspondance should be adressed.

families when the similarity is low. Various approaches
exist, but they primarily use alignment of two protein
sequences. An approach consists to exploit the homology
transitivity and to use one or more relay proteins to
establish the relations between proteins at low identity
rate (Teichmann et al., 2000). Another solution has
been the improvment of similarity search algorithms to
make them more sensitive, like PSI-BLAST (Altschul et
al., 1997). One more recent way consists in using the
information brought by the predicted secondary structures
to validate the structural homology that can bind two
proteins, even at low identity rate (Geourjon et al., 2001).
Indeed, secondary structure predictions are known to
succefully help in fold recognition, and various methods
based on this approach exist (Jones et al., 1999; Rost,
1995). Furthermore, since CASP3 (Critical Assesment
of Technics for Protein Structure Prediciton round 3;
see Proteins suppl. 3, 1999), all succefull methods in
the field of fold recognition make use of secondary
structures predictions, showing that secondary structure is
a valuable way to establish structural relationship between
proteins. Multiple alignments analysis, as for it, can be
made by the analysis of positional conservation (Pei and
Grishin, 2001), or by measuring the statistical sgnificance
calculated for multiple alignments (Hertz and Stormo,
1999). Another way consists in the use of a scoring
function like norMD (Thompson et al., 2001). But we
must admit that analysis and validation tools are missing,
leaving the user to cope with manual analysis. In order
to provide a solution to this problem, we present here
a novel way to validate protein families within multiple
alignments at low identity rate (10 to 30%). Our method
consists in analyzing the agreement between predicted
secondary structures of the aligned sequences. We show
that it is then possible to validate structural families within
multiple alignments at low identity rate, by discarding the
nonrelated sequences.
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MATERIALS AND METHODS
Overview
Is SOV parameter a valuable tool to validate protein fam-
ilies? To answear this question, SOV is calculated using
reference alignments. It is compared to SOV calculated
for control alignments. For each alignment, we proceed
in three steps. Firstly, control alignments are obtained
from a reference alignment in which a sequence is made
non related to the others by random shuffling. Secondly,
secondary structures are predicted for all the aligned
sequences. Thirdly SOV parameters are calculated for
reference and control alignments and they are compared
through the calculation of a corrected difference �SOV.

Reference Alignments
For this work, benchmark alignments are needed, with
objective criteria to assess the quality of an alignment.
Structural alignments can provide reference alignments.
Indeed, this kind of alignment is more reliable when the
identity level between sequences is low, since it is ob-
tained after three-dimensional structures superimposition,
ensuring an optimal alignment of amino acids sequences
so that the structure, and possibly the function are pre-
served. Two principal sources of structural alignments
were used: SSSD (Friedberg et al., 2000) and BAliBASE
(Bahr et al., 2001).

SSSD. The SSSD database is obtained starting from
DAPS database (Distant Aligned Protein Sequences, Rice
and Eisenberg, 1998; http://siren.bio.indiana.edu/daps).
SSSD contains 126 pairs of aligned structures sharing
on average 12% of sequence identity (8 to 13%), with
variable gap rates (0 to 60%). These alignments include
proteins of more than 30 residues, with determined
structure of, at least, 3.5 Å resolution. The similarity
between the sequences for each of the 126 pairs is below
the detection threshold of Smith and Waterman dynamic
programming algorithm.

BALIBASE
BAliBASE (version 1.0) is a database of multiple struc-
tural alignments, containing five groups of alignments also
called references. Reference 1 alignments consist of equi-
distant sequences of similar length. For each alignment,
the identity level between any two sequences is within a
specified range, resulting in three sets (Table 1). Reference
2 alignments contain families composed of closely related
sequences (sharing at least 25% of identity) and orphan
sequences representing distant members of the family,
sharing at the most 20% identity with any other sequence
within the alignment. Reference 3 alignments contain up
to four families per alignment. The identity rate between
two sequences from different families never exceeds

minov 

maxov 

Protein 1 
Protein 2 

Fig. 1. Shematic representation of minov and maxov as used in
equation (1).

25%. References 4 and 5 contain alignments with large
N-terminal extensions and large C-terminal insertions. All
these references were created with the aim of covering the
majority of biological cases and difficulties, which can
be encountered by multiple alignments programs. Thus,
these references offer benchmark alignments to assess
the quality of such programs (Karplus and Hu, 2001;
Thompson et al., 1999).

We used these two sources of structural alignments since
they are complementary. Indeed, SSSD alignments present
a relatively constant identity rate with variable gap rates,
allowing to know gap rate influence on the discriminate
capacity of secondary structure compatibility parameter
SOV (Structural OverLap; Rost et al., 1994a). BALiBASE
alignments, as for them, will help in studying the possible
correlation between the identity level and SOV parameter
within a multiple alignment.

Secondary structure compatibility
For each aligned pair, the agreement between secondary
structure was estimated by calculating SOV parameter as
most recently defined (Zemla et al., 1999) and adapted to
the comparison of two different proteins (Geourjon et al.,
2001):

Sov = 100

×
[

1

N

∑
i∈[H,E,C]

∑
S(i)

minov(Sq,St) + δ(Sq,St)

maxov(Sq,St)
×len(Sq)

]

(1)

in which N is the alignment length minus the number of
gaps; len is the sequence length; H , E and C are the Helix,
Extended, and Coil states, minov is the length of actual
secondary structures overlap of the query Sq and the target
St; maxov is the maximal length of overlapping secondary
structures Sq and St (Fig. 1) and δ is defined as

δ(Sq,St) = min {(maxov(Sq,St) − minov(Sq,St));
minov(Sq,St); len(Sq)/2; len(St)/2}.

Whereas it is recognized that identity must be at least
about 25% for the selection of a structural template in a
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Table 1. BAliBASE version 1.0 status. Alignments number in each Reference. (from Thompson et al., 1999). For each alignment, an average gap rate is
calculated for each sequence. The average is obtained using all possible pairs between this sequence and the other ones of the alignment. If the average gap
rate exceeds 30%, the sequence is removed from the study (SOV values obtained with all pairs implying this sequence are not considered)

Alignment Number

Reference 1 <100 residues 200 < 300 residues >500 residues Average gap rate (%) Removed sequences

ld < 25% (set1) 7 8 8 11.27 ± 5.60 0
20 < ld < 40% (set2) 10 9 10 11.44 ± 6.79 0
ld > 35% (set3) 10 10 8 12.09 ± 6.89 0

Reference 2 9 8 7 10.69 ± 5.03 0
Reference 3 5 3 5 17.25 ± 5.72 0

Extensions (ref. 4) Insertions (ref. 5)
Alignment number 12 12
Average gap rate 22.12 ± 4.03 16.00 ± 5.92
Removed sequences 73 16

molecular modeling process, the use of SOV parameter
within PROCSS method (PROtein Compatibility from
Secondary Structure; Geourjon et al., 2001) allows to
decrease this threshold by 10% with the contribution of
the secondary structures information. At low identity
level (below 25%), sequence similarity alone fails to find
distantly related proteins. The SOV brings an additional
dimension, thus decomposing the information contained
in a pair of aligned sequences, and gives a reliable way
to assess the homology between two proteins when they
share 10 to 30% identity. By applying a SOV threshold
of 60%, it is possible to validate the homology between
two proteins at a success rate of 95% (Geourjon et al.,
2001). The SOV parameter is a particularly interesting
tool, insofar it makes a clear improvement of homology
molecular modeling processes by increasing the number
of potentially usable structural templates. For this reason,
SOV parameter is used in automatic molecular model-
ing processes available through Internet, like Geno3D
(Combet et al., 2002) integrated within the NPS@ server
(Network Protein Sequence Analysis; Combet et al.,
2000, http://npsa-pbil.ibcp.fr/).

Secondary structures prediction
SOV calculation requires secondary structures. With
this goal, three predictive methods were used: SOPMA
(Geourjon and Deléage, 1995), DSC (King et al., 1997)
and PHD (Rost et al., 1994b).

The consensus prediction is calculated using these three
methods: the most frequently observed state is kept. With
this consensus the prediction accuracy obtained is a little
bit more reliable than any given method alone as shown in
Table 2.

Table 2. Accuracy levels of secondary structure predictions. Q3 is the
prediction accuracy considering three secondary structure states (Helix,
Extended or Sheet, Coil)

Q3%
Prediction method Coil Helix Sheet Average

SOPMA 75.5 75.3 62.1 72.5
DSC 78.0 64.5 56.2 68.5
PHD 74.9 74.3 64.8 72.5
SOPMA-DSC-PHDa 80.1 72.9 59.4 72.8

aConsensus pradiction method from all three methods as calculated in
NPS@ (Combet et al., 2000)

Control alignments and SOV parameters. Control
alignments are obtained by the random shuffling of one
sequence in the alignment taking care about preserving
gap and identity rates between the two sequences. For
each SSSD aligned pair, two control alignments groups
are obtained. In the first control alignments group, the first
sequence is kept unchanged, and the second is modified
(Fig. 2). This procedure is performed three times resulting
in a first group composed of three alignments. The
second group is obtained in the same way, but here the
second sequence of each alignment being kept unchanged
while the first one is modified. The secondary structure
of randomised sequences is then predicted. The SOV
Parameter is then calculated for the six control pairs and
for the actual SSSD alignment. This process is applied to
all SSSD alignments.

The average control SOV (SOVcontrol) is calculated with
control alignments and is compared to the average actual
SOV (SOVactual) resulting from SSSD alignments. This
comparison is made by the calculation of the corrected
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Fig. 2. Calculation of actual SOV parameter, control alignments and
control SOV parameter. Random sequences (dotted lines) are ob-
tained by random shuffling of sequences, taking care of preserving
gap and identity rates between sequences. For each alignment pair,
each sequence is randomly shuffled three times. The process is ap-
plied to all SSSD alignments. SOV parameters are calculated on
aligned secondary structures as defined in equation (1). Secondary
structures predictions are a consensus prediction calculated using
three prediction methods (see Materials and Methods): SOPMA
(Geourjon and Deléage, 1995), DSC (King et al., 1997) and PHD
(Rost et al., 1994b).

difference:

�SOV = SOVactual−(SOVcontrol+σSOVactual+σSOVcontrol)

(2)
with SOVactual: the average SOV on SSSD alignments;
σSOVactual: standard deviation on SOVactual; SOVcontrol: the
average SOV on control alignments; σSOVcontrol: standard
deviation on SOVcontrol. This process is applied to all
BAliBASE multiple alignments. So, for each multiple
alignment, the actual SOV parameter is calculated for
every pair in the alignment. It is compared to the control
SOV parameter obtained with all the possible control pairs
(in which the amino acids positions of one sequence had
been randomly changed). Thus for a multiple alignment of
n sequences, a total of n(n − 1) possible control pairs are
obtained. These pairs are recomputed three times, leading
to a total of 3n(n − 1) control pairs, on which the average
control SOV is calculated.

RESULTS
On the one hand, the effect of the gap rate on SOV discrim-
ination has been studied in SSSD pairwise alignments. On
the other hand, the effect of the identity rate on the ca-
pability to detect related proteins in multiple alignments
has been studied by using BAliBASE as a set of reference
multiple alignments.

SOV comparison
SSSD. In order to determine gap effect, the corrected
difference �SOV is represented as a function of gap rate in
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Fig. 3. Calculated SOV for SSSD. (a) SOVactual (squares) and
SOVcontrol (circles) are calculated as defined equation (1) on
SSSD aligments and control alignments obtained as described
Figure 2. �SOV is the corrected difference between SOVactual and
SOVcontrol calculated as described in equation (2).

aligned pairs (Fig. 3). The observed SOV is always greater
than the control SOV regardless the gap rate (Fig. 3A).
The plot of the corrected difference between actual and
control SOV’s shows a significant difference (Fig. 3B).
SOV parameter is able to set appart, in a identity range
from 8 to 13%, the related sequences pairs from from pairs
containing a randomised sequence. This distinction can be
observed up to about 30% gap rate. Beyond this threshold,
�SOV is not sufficient any more to permit this reliable
discrimination. We can note the weaker the gap rate, the
greater the �SOV and the easier the discrimination. This
comes from the fact that secondary structure cannot be
predicted in gap regions. So the higher the gap rate, the
lower the SOVactual. Thus the difference �SOV becomes
too low to be reliably used.

BAliBASE. The SOV parameter variation for SSSD
aligned pairs results in the definition of a reasonable 30%
gap threshold. This threshold is applied to BAliBASE.
For each alignment, and for each sequence, an average
gap rate is calculated beetween this sequence and the
other sequences of the alignment. For all alignments of
references 1 to 3, the gap rates for all sequences do not
exceed this threshold, thus allowing to include all of them
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Fig. 4. �SOV for all the BAliBASE Références. �SOV is calcu-
lated as defined in equation (2).

in the study. The extensions in reference 4 alignments,
lead us to remove 73 sequences from the study (reference
4 counts 108 sequences in 12 alignments). For these
sequences, the average gap rate exceeds 30%. The same
problem was encountered with reference 5 (which counts
100 sequences in 12 alignments). 16 sequences were not
considered in SOV calculation. BAliBASE, by providing
representative alignments of various biological cases, in
form of multiple alignments with variable identity and
gap rates (Table 1), enabled us to study SOV parameter
discrimination capabilites as a function of identity rates
in multiple alignments. The results show that, when the
identity is above 40%, �SOV tends to decrease quickly
and becomes weak. This shows that when identity is
above 40%, it becomes difficult to distinguish between
a related protein sequence and a randomised sequence
in a multiple alignment (Fig. 4). Reversely, below this
threshold, SOV discrimination capacity is all the stronger
since identity rate is weak: �SOV is 17% at 10%
sequence identity to decrease to 9% when the identity
reaches 40% (Fig. 4). This general tendency observed
for all BAliBASE alignments also appears when the
references are considered in an individual way (data
not schown). These results obtained with BAliBASE
(Fig. 4) can serve as a �SOV calibration curve. This
curve is identity dependant. With a given identity for
a protein in a alignment, this protein must show a
�SOV superior or equal to BAliBASE threshold (at
that identity rate) to be predicted as related to other
sequences in the alignment. An example is given in next
section to illustrate the utility and reliability of SOV
predictions.

Biological example: comparison with PSI-BLAST
In order to demonstrate the merit of the method, a
comparison with PSI-BLAST (Altschul et al., 1997) and a
SCOP (Murzin et al., 1995) validation have been made.
Q925W1 is a serine protease inhibitor of 346 residues.
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Fig. 5. �SOV for selected sequences in the multiple alignment, with
their PSI-BLAST E-value (Q = Query). � = sequence predicted as
non related with �SOV and found with PSI-BLAST; • = sequence
predicted as related with �SOV.

A PSI-BLAST (version 2.2.1) search is performed in
TrEMBL (release 70). All the sequences found in the
last run (#4) with E-Value above 0.01 are selected, if
they share at least 150 residues with Q925W1 between
position 30 and 200 (Table 3). The sequences are aligned,
secondary structures are predicted, SOV and �SOV are
calculated (Table 3). The results show that, at high E-
values (0.01 to 10), no possible discrimination can be
made between related and non related proteins, using
PSI-BLAST E-values or identity rates. In this case, this
is particularly true for protein Q9UZM4 found with an
E-value of 0.18, whereas SOV predictions identify it
clearly as a nonrelated one. Indeed, by applying a SOV
threshold of 60%, it is possible to validate the homology
which can exists between two proteins (Geourjon et al.,
2001). As Q9UZM4 is found with a 40% SOV, this
protein is predicted as non related to Q925W1 family.
To bring an additionnal argument, we can use �SOV
value. For Q9UZM4, �SOV is 11 and average identity
between this protein and the other in the alignment is
11% (Table 3). Therefore, BAliBASE study lead to the
determination of a minimal �SOV threshold (at 11%
identity) of 17 (Fig. 4). Below this �SOV threshold,
the protein is predicted as non related to Q925W1
family. Q9UZM4 is the only protein in this alignment
showing a �SOV below BAliBASE threshold (Tables 3
and Figure 5). Furthermore, if we make a comparison
between Q9UZM4, Q29014 and Q9AU61, we can see that
all these proteins present an average identity within the
alignment about 10%. Q29014 and Q9AU61 show �SOV
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Table 3. SOV and �SOV for the selected proteins from PSI-BLAST (version 2.2.1) search results in TrEMBL (release 70). Id (column 5) represents the average
identity for a sequence with all the other sequences within the multiple alignment. The proteins were aligned with ClustalW (version 1.8), SOV parameter
was calculated on NPS@ server. BAliBASE threshold used is determined using Figure 4. All the proteins, except Q9UZM4 (bold) are predicted as related to
Q925W1 family since they have a �SOV higher than BAliBASE threshold. Q9UZM4, Q29014, Q9AU61 (bold) present an average identity about 10% in the
multiple alignment. Q29014 and A9AU61 are predicted as related. Furthermore, it is important to note that Q29014 and A9AU61 are found by PSI-BLAST
with E-values higher than Q9UZM4 one. SCOP results are obtain through web site: http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/index.html, release
1.59

Name Psi-Blast Psi-Blast Overlap Id in the Sov �Sov Minimal Prediction SCOP
Evalue Identify alignment �Sov (BALLBASE) classification

Q925W1 (Query) 23 60 19 15.5 Related Lipocalin
Q9DBJ9 1E−106 95 349 23 58 16 15.5 Related Lipocalin
Q40251 0.022 16 167 49 62 9 4.5 Related Lipocalin
Q40693 0.14 14 196 50 70 15 4 Related Lipocalin
Q39249 0.15 15 181 51 67 15 3.9 Related Lipocalin

P-LOOP
containing

Q9UZM4 0.18 11 177 11 40 11 17.1 Non-Related nucleotide
triphosphate
hydrolase

AAL83562 0.26 15 194 52 71 17 3.8 Related Lipocalin
Q9SM43 1.2 14 191 50 71 17 4 Related Lipocalin
Q29014 2.8 13 168 9 59 30 17.5 Related Lipocalin

AAL67858 3.3 16 197 52 70 13 3.8 Related Lipocalin
Q9AU61 7.9 14 173 12 59 21 17 Related Lipocalin

values above �SOV threshold. These two proteins are
clearly predicted as related to Q925W1 family, although
their E-values are higher than Q9UZM4 one. These
results demonstrate that SOV parameter performs an
effective discrimination between related and non related
proteins at low identity rate. In order to confirm SOV
predictions, a SCOP search has been performed. SCOP
is a powerfull structural classification tool, which uses a
structural profil database (release 1.59). SCOP predictions
are in accordance with SOV ones (Table 3).

These results show secondary structure information pro-
vides a way to detect a protein with no structural homol-
ogy with the other sequences of the multiple alignment,
even at low identity rates. Consequently, the SOV valida-
tion of structural families within multiple alignments at
low identity has a real biological significance and can be
regarded as reliable. This kind of validation is possible on
the sequence analysis server NPS@ (http://npsa-pbil.ibcp.
fr/), in the multiple alignment tools (secondary structure
predictions and sov calculation).

DISCUSSION
It has been previously shown by Geourjon et al. (2001),
that information brought by the secondary structures is a
valuable way to identify structural homologous proteins
even if their sequences are relatively divergent (10 to 30%
identity). This discrimination between related sequences
pairs and non-related ones, at low identity level, is possible

by using the SOV parameter. It is a reliable tool primarily
used in structural approaches, specially in molecular
modeling processes, like low identity homology molecular
modeling (Geourjon et al., 2001) or threading techniques
(Jones et al., 1999).

Our study using SSSD database and its low identity
aligned sequences (8 to 13% identity) confirms the SOV
relialibilty, in its capability to assess proteins homology
at low sequence identity rate. In addition, it leads to the
definition of a 30% gap rate threshold, below which SOV
distinction is reliable. SOV parameter is a particularly
interesting tool to help in the comparison of two protein
sequences. Nevertheless, it has never been made profitable
in multiple sequences alignments. Here we propose a
novel way to take advantage of the information brought by
the secondary structures compatibility within low identity
multiple alignments. Indeed, we have demonstrated SOV
and �SOV abilities to detect unrelated sequences within
BAliBASE multiple alignments. The lower the identity,
the easier the detection. �SOV is able to perform a
particularly effective detection of a non-related sequence,
since it proves to be most reliable when it is most difficult:
at low sequence identity level, and by only considering
the sequences, it is hazardous to come to a conclusion
about a biological relation between two sequences. Under
these conditions, the secondary structures compatibility
provides all its utility, and brings a considerable way
to assess the homology relationships between sequences
within low identity multiple alignments.
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